close

Enter

Log in using OpenID

embedDownload
٠٧/٢٩/١۴٣۵
1
: ‫• منابع درسي‬
• 1‐ Non ferrous extractive metallurgy, By: C.B. Gill
• 2‐ Principles of extractive metallurgy, by: Terkel Rosenquist
• 3‐ Extractive Metallurgy of Copper, By: BISWAS, DAVENPORT, KING, SCHLESINGER
• 4‐ Chemical metallurgy, By: J.J. Moore
• 5‐Principles of pyrometallurgy, By: C.B. Alcock
• 6‐A textbook of hydrometallurgy, by: F. Habashi
• 7‐Extractive Metallurgy, Alain Vignes
‫ دكتر قاسم زاده‬، ‫استخراج فلزات‬ ‐٨ •
:‫• ارزيابی‬
‫• حضور در کالس‬
،‫ نمره‬۵٠ : ‫ پايان ترم‬، ‫ نمره‬۵٠ :‫• امتحان ميان ترم‬
2
١
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Extraction of metals
• Definitions:
• Ore = Metal mineral+Gangue
• Minerals: Oxides, Sulphides, Oxysalts,
Elemental or Arsenides
• Gangues: Silicates Oxides, Sulphides
Concentration of ores why?
Facilitate the subsequent extraction process
3
Major steps in extraction of metal
• Ore concentration
– Ore is purified and concentrated
concentrated, unwanted rocks
removed
• Reduction to crude metal
– Metal oxides to be reduced to metals, resulting in a
mixture of metals collected
• Refining to obtain pure metal
– To obtain a specific metal, purify and remove
unwanted metal impurities
4
٢
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Concentration
‫تغليظ‬
Scope:
produce a mineral concentrate with
approx.
pp
25wt% of metal or more
¾Steps:
¾Comminution ( ‫)خرد کردن‬:
¾ crushing
¾ grinding
i di
¾Screening ‫الک کردن‬
¾Separation process
5
Comminution
¾ Crushing ore into fine particles
¾Reduction ratio(= entry size/exit size)= 3:1
to 4:1
¾Grinding /milling: finer particle (6 mm for
sintering)
¾ Screening between each crusher to remove fine particle
and avoid further size reduction
6
٣
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Separation process
¾Classification process: separation different
particles based on different travelling rates through a
fluid.
¾Separation: Froth flotation
¾ Based of surface energy difference
¾ Introducing air bubbles into cells containing different
minerals particles in water
¾ Adsorption metal-bearing particles onto air bubbles
¾ Rising bubbles results in separation from gangue
particles
7
8
۴
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Agglomeration
¾If particles are too fine
¾Very dense ore
¾Agglomeration routes:
¾High temperature methods:
¾Sintering
¾Nodulising
¾Room temperature:
¾Pelletising and briquetting
9
Ways of Extraction
Extraction by
electrolysis of
molten Al2O3
dissolved in
cryolite
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Potassium
Sodium
C l i
Calcium
Magnesium
Aluminium
Zinc
Iron
Tin
Lead
Copper
Mercury
Silver
Gold
Platinum
K
Na
C
Ca
Mg
Al
Zn
Fe
Sn
Pb
Cu
Hg
Ag
Au
Pt
Extracted by
electrolysis
y
of
molten chlorides
Extraction by
Pyrometallurgy
Roasting ore by
heating alone
10
۵
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
the extraction of metals
Metals at the top of the reactivity series are very reactive:
ƒ bonds in their compounds are very strong
ƒ must be extracted by decomposing their compounds with
electricity in an expensive process called electrolysis
ƒ aluminium is extracted from aluminium oxide by passing an
electric current through it
2Al2O3
4Al + 3O2
11
Minerals of metals
Iron
•
•
•
•
Hematite Fe2O3 ‫ آھن‬%٧٠ ‫در حدود‬
Magnetite Fe3O4 ‫ آھن‬%٧٢ ‫در حدود‬
Limonite Fe2O3.XH2O ‫ آھن‬%۶٣-۵٩ ‫در حدود‬
Siderite FeC03 ‫ آھن‬%۴٨ ‫در حدود‬
• Aluminium:
•
•
•
•
Bauxite Al2O3.XH2O
G
Gibbsite
Al2O3.3H2O
Diaspor Al2O3. H2O
Corundum Al2O3
12
۶
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
• Copper (Sulphide and Oxide)
Chalcopyrite:CuFeS2
Chalcocite:Cu2S
Covellite: CuS
Bornite: Cu3FeS3
Enargite: Cu3AsS4
Malachite:
CuCo3.Cu(OH)2
Azurite:
2CuCo3.Cu(OH)2
Cuprite: Cu2O
Tenorite: CUO
• Lead
•PbS ‫دارای رنگ خاکستری و براق‬
•Cerussite PbCo3
•Zinc:
Splalerite Zns
•Manganese:
Pyrolusite MnO (40%Mn)
2
13
• Magnesium:
• Dolomite MgCo3.CaCO3
• Magnesite
MgCO3
• Olivene (green) (Mg,Fe)2SiO4
• Titanium:
• Rutile
TiO2
• Ilmenite Feo.TiO2
14
٧
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Metal extraction methods
™Pyrometallurgy: high temperature process
(500-2000 C) near MP
™Smelting, converting and fire refining
™Hydrometallurgy: extraction from aqueous
solutions
™Putting the metal values into solution
(leaching)
™Recovering the metal from solution
(precipitation)
™Electrometallurgy : uses electrical energy for
chemical reaction (electrowinning, electrorefining)
15
Electrometallurgy
• Electrowinning : extraction of metals from an
electrolyte
(‫ استخراج فلز از يک الکتروليت)ھيدرومتالورژی‬:‫• الکتروينينگ‬
• Electrorefining: refining of the impure metals
from anode
‫ تصفيه ناخالصی ھای فلزی از‬:‫• الکتروريفاينينگ‬
(‫آند)پيرومتالورژی‬
16
٨
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Pyrometallurgy characteristic
™High temperature process(500-2000°C)
((thermodynamic
y
and kinetic))
™Accelerate reaction Æ Increase production
rate( every 10°C double the rate of process)
™Ability to change reaction direction
(equilibrium) with T
™e g At 25
™e.g.
25°C
C
Zn+COÆZnO+C
™At 1200°C ZnO+CÆZn+Co i.e. Carbon can
not reduce ZnO except at elevated T
™Iodide refining of refractory metals(Zr, Ti)
17
• Suitable for reactive metals like Ti and Zr
• Reaching equilibrium at High T
• Need to suitable purity oresÆ Ore
dressing
18
٩
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Hydrometallurgy characteristic
¾Low temperature processÆ more safe and
low energy consumption
¾Slow reactionÆ time consuming
¾Environmental effect ( gas contamination,
dust, water, heavy metal like Hg)
¾Thermal contamination is lower
¾Cut off contamination
¾High price solvent
¾Recover precious metals as by-product
19
20
١٠
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Preliminary process
• Convert metal bearing compounds into
f
form
that
th t easily
il processed
d
Sulfides Æ Oxides, Sulfates and chlorides
OxidesÆ Sulfates and chlorides
CarbonatesÆ oxides
U it process: connection
Unit
ti b
between
t
diff
differentt
processes for overall extraction and refining
21
Method selection
¾Kind of ore:
¾oxides and sulfates Æ leaching
¾Sulfides difficult to solve
¾ grade of purity reqiured
¾E.g. Zinc produced by Pyrometallurgy from ZnS
contains impurity like As, Fe, PbÆ useful for
galvanizing and brass producing
¾High pure Zn by electrolytically precipitation from a
leach solution Æ for Zinc alloys manufacturing
¾ presence of precious metals
¾E.g. Blister copper without precious metals
processed by inexpensive fire refining
¾With precious metals electrorefining
١١
22
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Nonferrous Extractive
¾Reactive metals: Al, Ti, Mg, Zn, U
¾oxidation problem or Impossible to electrowining
from an aqueous
¾ need special equipment keep them exclude from Air
atmosphere like Vacuum or inert gas sealed furnaces
¾Nonreactive metals: Cu, Ni, Pb, Co, Au, Ag
¾Simply
pyp
processed in an air atmosphere
p
without
any problem of oxidation during reduction of
metals oxides by Carbon or precipitation from an
aqueous solution
23
Nonferrous Extractive
¾Reactive metals: Al, Ti, Mg, Zn, U
¾Pyrometallurgy treatments: Roast, Smelt, Refine
¾Hydrometallurgy treatments: Roast, Leach,
Concentrate, purify, precipitate, refine
¾Nonreactive metals: Cu, Ni, Pb, Co, Au, Ag
¾Pyrometallurgy treatments: Roast, Smelt,
convert,
co
e t, Refine
e e
¾Hydrometallurgy treatments: Roast, Leach,
precipitate, refine
24
١٢
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Nonreactive metals Pyrometallurgy
¾ Oldest and most frequently used method.
¾Cu, Ni, Pb, Co
Drying and calcination
Roast
Smelt
convert
Fire refining
‫تصفيه آتشی‬
‫تشويه‬
‫گداز‬
‫تبديل‬
Electrolytic refining
chemical refining
‫تصفيه الکتروليتی‬
‫تصفيه شيميايی‬
25
Nonreactive metals Hydrometallurgy
¾Cu, Ni, Pb, Co
Roast
Concentrate
Electrolytic
precipitate
i it t
Metal
١٣
Leach
Chemical
precipitate
Electrolytic
refining
chemical refining
26
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
reactive metals, Pyrometallurgy
Drying and calcination
¾Al, Mg,Ni,Zn,U
Roast
Smelt
Fi refining
Fire
fi i
El t l ti refining
Electrolytic
fi i
Metal
27
Reactive metals Hydrometallurgy
¾Al, Mg,Ni,Zn,U
Roast
Purify
Leach
Electrolytic precipitate
Concentrate
Chemical precipitate
Fire refining
Metal
١۴
28
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Drying
‫پيش فرآيندھا‬
Drying: removing water from ores,
concentrates and cokes at high T / room
T((decrease pressure of atmosphere below partial pressure
of water)
29
Calcination
• Calcination: Removal of chemically
bound gasses: CO2(carbonates) and
y
)
H2O, ((hydrates)
• CaCO3ÆCaO+CO2 (at T=825°C ∆G°=0)- ∆H°=161
kJ/mol
• <Mg(OH)2>Æ<MgO>+(H2O) ‫∆گرماگير‬H°=46 kJ/mol
• Decomposition T: MgCO3( 417
417°C),MnCO
C),MnCO3(377
(377°C),
C),
FeCO3(400°C)
30
١۵
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Calcination
Rotary kiln
31
calcination
CaCO3+Coke
‫کوره عمودی استوانه ای‬
Pre heating
(
)
zone(800°C)
Reaction
zone (1000°C)
Cooling zone
Air+25%extra air
CaO
١۶
32
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Pyrometallurgy
Roasting
Oxidation of metal sulfides to give metal
oxides and sulfur deoxide
™Change metallic compounds into forms
™Easily
y treated by
y following
g treatment
™Remove some volatile impurities in gas stream
¾ Oxides reduced better than sulphides
¾ sulphates and chlorides by leaching
Roasting Vs. Calcination
:‫انواع تشويه‬
‫ زينتر شدن و احيائی‬،‫ مغناطيسی‬،‫ تبخيری‬،‫ سولفاته‬،‫ کلريدی‬،‫اکسيدان‬
33
Examples
Roasting :
1-below smelting Temperature of the sulfides and oxides
involved, usually below 900-1000°C.
22-on
on the other hand for kinetics of reaction temperature has to
be above 500-600 °C. Thus the temp range of interest is
between 500-1000°C.
34
١٧
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫تشويه ‪Roasting‬‬
‫• اطالق سنتی از تشويه حذف عناصری چون گوگرد‪ ،‬آرسنيک‬
‫و تلوريم‬
‫• در گستره وسيعتر تشويه آماده سازی محصوالت برای عمليات‬
‫بعدی در فرآيند استخراج فلزات از طريق احياء‪ ,‬سولفاته و‬
‫کلرينه کردن در درجه حرارتھای کمتر از نقطه ذوب اجزاء‬
‫‪35‬‬
‫• ﺗﺸﻮﻳﻪ ‪:Roasting‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫جلسه ‪٢‬‬
‫ﻓﺮآﻳﻨﺪ ﭘﻴﺮوﻣﺘﺎﻟﻮرژي‬
‫ﺗﺸﻮﻳﻪ اﻛﺴﻴﺪان ‪:Oxidizing roasting‬‬
‫ﺣﺬف ﻧﺎﻗﺺ ﻳﺎ ﻛﺎﻣﻞ ﮔﻮﮔﺮد ﻣﻮﺟﻮد در ﺳﻨﮓ ﻣﻌﺪن )ﺑﻪ ﺷﻜﻞ ﺳﻮﻟﻔﻴﺪ(‬
‫ﺗﻮﺳﻂ اﻛﺴﻴﮋن‪ .‬واﻛﻨﺶ ﮔﺮﻣﺎزا ﺑﻮده و ﮔﺎﻫﻲ اوﻗﺎت ﺑﺮاي ﻛﻨﺘﺮل دﻣﺎ‪ ،‬از‬
‫ﻛﻨﺴﺎﻧﺘﺮه ﻣﺮﻃﻮب اﺳﺘﻔﺎده ﻣﻲ ﻛﻨﻨﺪ‬
‫)‪• <MS>+(3/2O2)=<MO>+(SO2‬‬
‫ﺗﺸﻮﻳﻪ ﻧﺎﻗﺺ ‪ :partial roasting‬وﺟﻮد ﭼﻨﺪ ﺟﺰء ﺳﻮﻟﻔﻴﺪي در‬
‫ﻛﻨﺴﺎﻧﺘﺮه‪ ،‬ﻧﺎﺧﺎﻟﺼﻲ ﻫﺎي ﻓﻠﺰي اﻛﺴﻴﺪه ﺷﺪه و ﻛﺎﻫﺶ ﻣﻘﺪار ﮔﻮﮔﺮد ﻣﻮﺟﻮد‪.‬‬
‫اﻛﺴﻴﺪﻫﺎي ﻓﻠﺰي در ﻣﺮﺣﻠﻪ ذوب ﺟﺪا ﺷﺪه و در ﺳﺮﺑﺎره ﺟﺪاﮔﺎﻧﻪ ﺟﻤﻊ‬
‫ﻣﻲﮔﺮدﻧﺪ‪ .‬ﻟﺬا اﻳﻦ ﻧﻮع ﺗﺸﻮﻳﻪ ﺑﺮ روي ﺳﻮﻟﻔﻴﺪ ﻓﻠﺰات ﻧﺠﻴﺐ )ﻣﻴﻞ ﺗﺮﻛﻴﺒﻲ‬
‫اﻛﺴﻴﺪ‬
‫ﺑﺮاﺣﺘﻲ اﻛ‬
‫ﺳﻮﻟﻔﻴﺪي ا‬
‫ﻫﺎي ﻟ‬
‫ﻧﺎﺧﺎﻟﺼﻲ ﺎ‬
‫ﺗﺎ ﺎ ﺎﻟ‬
‫اﻧﺠﺎم ﻣﻲ ﺷﻮد ﺎ‬
‫اﻛﺴﻴﮋن( ا ﺎ‬
‫ﻛﻛﻤﺘﺮ ﺎﺑﺎ اﻛ‬
‫ﺷﻮﻧﺪ‪.‬‬
‫ﺗﺸﻮﻳﻪ ﻛﺎﻣﻞ ‪ :Dead roast‬ﻫﻨﮕﺎﻣﻲ ﻛﻪ ﻗﺮار اﺳﺖ اﻛﺴﻴﺪ ﻓﻠﺰ ﺑﺎ ‪ C‬ﻳﺎ ‪H2‬‬
‫اﺣﻴﺎء ﺷﻮد‪ ،‬اﺑﺘﺪا ﺳﻮﻟﻔﻴﺪ آن ﻛﺎﻣﻞ ﺑﻪ اﻛﺴﻴﺪ ﺗﺒﺪﻳﻞ ﺷﺪه و ﺳﭙﺲ آن را اﺣﻴﺎء‬
‫ﻣﻲ ﻛﻨﻨﺪ‪.‬‬
‫‪36‬‬
‫‪١٨‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫ﺗﺸﻮﻳﻪ ﻛﻠﺮﻳﺪي ‪:Chloridising roasting‬‬
‫ﺗﺒﺪﻳﻞ ﺗﺮﻛﻴﺒﺎت ﺧﺎﺻﻲ از ﻓﻠﺰات ﺑﻪ ﻛﻠﺮﻳﺪ آﻧﻬﺎ در ﺷﺮاﻳﻂ اﺣﻴﺎﺋﻲ ﻳﺎ اﻛﺴﻴﺪي‬
‫) ‪ U,Nb,Zr,Ti‬ﻓﻠﺰاﺗﻲ ﻫﺴﺘﻨﺪ ﻛﻪ از ﻛﻠﺮﻳﺪﺷﺎن ﺗﻬﻴﻪ ﻣﻲ ﺷﻮﻧﺪ(‪.‬‬
‫ﮔﺮﻣﺎزا ‪• 2NaCl+MS+2O2=Na2SO4+MCl2‬‬
‫‪• 4NaCl+2MO+S2=2Na2SO4+2MCl2‬‬
‫)‪• TiO2+C+2Cl2=TiCl4+CO2 (500C‬‬
‫ﻋﻠﺖ اﻓﺰودن ﻛﺮﺑﻦ ﻣﻨﻔﻲ ﻛﺮدن اﻧﺮژي آزاد واﻛﻨﺶ اﺳﺖ‪ ،‬ﭼﻮن از ﻧﻈﺮ‬
‫ﺗﺮﻣﻮدﻳﻨﺎﻣﻴﻜﻲ ‪ TiCl4‬ﻧﺎﭘﺎﻳﺪارﺗﺮ از ‪ TiO2‬اﺳﺖ‪.‬‬
‫ﺗﺸﻮﻳﻪ ﺳﻮﻟﻔﺎﺗﻪ ‪:Sulphating roasting‬‬
‫ﺗﺒﺪﻳﻞ ﺳﻮﻟﻔﻴﺪ ﻓﻠﺰات ﺑﻪ ﺳﻮﻟﻔﺎت ﻛﻪ ﻣﺤﺼﻮل ﺑﻪ دﺳﺖ آﻣﺪه در ﻓﺮآﻳﻨﺪﻫﺎي‬
‫ﻫﻴﺪروﻣﺘﺎﻟﻮرژي در اﺳﻴﺪ ﺳﻮﻟﻔﻮرﻳﻚ ﺣﻞ ﻣﻲ ﺷﻮد‪.‬‬
‫ﺎ‬
‫‪• MS(s)+2O2(g)=MSO4‬‬
‫• ﺗﺸﻮﻳﻪ ﺳﻮﻟﻔﺎﺗﻲ اﻧﺘﺨﺎﺑﻲ ﻫﻢ اﻣﻜﺎن ﭘﺬﻳﺮ اﺳﺖ‪ ،‬ﻣﺜﻼ در ﺧﺼﻮص ‪Ni3S2-‬‬
‫‪ FeS‬ﻛﻪ در دﻣﺎي ‪ 850‬درﺟﻪ ﻓﻘﻂ ‪ FeS‬ﺗﺠﺰﻳﻪ ﻣﻲ ﺷﻮد‪.‬‬
‫‪37‬‬
‫ﺗﺸﻮﻳﻪ ﺗﺒﺨﻴﺮي‬
‫‪:Volatizing roasting‬‬
‫• اﻛﺴﻴﺪﻫﺎﺋﻲ ﻧﻈﻴﺮ ‪ As2O3,Sb2O3,ZnO‬را ﻣﻲ ﺗﻮان ﺑﺎ اﻳﻦ روش ﺑﻪ‬
‫ﺻﻮرت دود از ﻛﻨﺴﺎﻧﺘﺮه ﺧﺎرج ﻛﺮده و در ﺟﺎي دﻳﮕﺮي ﺑﻪ ﺻﻮرت ذرات‬
‫ﻓﺸﺮده ﺟﻤﻊ آوري ﻧﻤﻮد‪.‬‬
‫ﻣﻐﻨﺎﻃﻴﺴﻲ‬
‫ﻲ‬
‫ﻴ‬
‫ﺗﺸﻮﻳﻪ‬
‫• ﻮﻳ‬
‫‪:Magnetising‬‬
‫‪g‬‬
‫‪g roasting‬‬
‫‪g‬‬
‫• ﺗﺒﺪﻳﻞ ﻫﻤﺎﺗﻴﺖ ‪ ، Fe2O3‬ﭘﻴﺮﻳﺖ ‪ FeS2‬و ﺳﻴﺪرﻳﺖ ‪ FeCO3‬در ﻣﺤﻴﻂ‬
‫ﻛﻨﺘﺮل ﺷﺪه ﺑﻪ ﻣﮕﻨﺘﻴﺖ ‪ Fe3O4‬اﺳﺖ ﻛﻪ ﻣﻲ ﺗﻮان ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺧﺎﺻﻴﺖ‬
‫ﻣﻐﻨﺎﻃﻴﺴﻲ آن را از ﮔﺎﻧﮓ ﺟﺪا ﻧﻤﻮد‪.‬‬
‫)‪• 6Fe2O3+CÆ4Fe3O4+CO2 (at 400-500C, time=15 min‬‬
‫ﺗﺸﻮﻳﻪ اﺣﻴﺎﺋﻲ‬
‫‪:Reduction roasting‬‬
‫در اﻳﻦ ﻧﻮع ﺗﺸﻮﻳﻪ ﺗﺮﻛﻴﺒﺎت ﻓﻠﺰي ﻣﺴﺘﻘﻴﻤﺎ ﺑﻪ ﻓﻠﺰ ﻣﺮﺑﻮﻃﻪ اﺣﻴﺎ ﻣﻲ ﺷﻮد‪.‬‬
‫ﻣﻌﻤﻮﻻ ﺑﻪ ﻧﺪرت اﻧﺠﺎم ﻣﻲ ﺷﻮد ﭼﻮن ﺑﺎﻳﺴﺘﻲ در ﻓﺸﺎر اﻛﺴﻴﮋن ﺑﺴﻴﺎر ﻛﻢ و‬
‫درﺟﻪ ﺣﺮارت ﺑﺎﻻ اﻧﺠﺎم ﺷﻮد‪ .‬ﺑﺮاي ﺗﺮﻛﻴﺒﺎت داراي آرﺳﻨﻴﻚ ﻛﺎرﺑﺮد دارد‪.‬‬
‫‪38‬‬
‫جلسه ‪٢‬‬
‫‪١٩‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫ﺗﺸﻮﻳﻪ زﻳﻨﺘﺮ ‪:Sinter roasting‬‬
‫• ذرات ﻧﺮم ﺳﻨﮓ ﻣﻌﺪن و ﻛﻨﺴﺎﻧﺘﺮه را ﻗﺒﻞ از اﻓﺰودن ﺑﻪ ﻛﻮره ﺑﻠﻨﺪ ﺑﺎﻳﺪ‬
‫ﺑﺼﻮرت ﺗﻮده اي زﻳﻨﺘﺮ ﺷﺪه درآورد‪ ،‬در ﻏﻴﺮ اﻳﻦ ﺻﻮرت ﻣﻘﺎدﻳﺮ زﻳﺎدي از‬
‫آن ﺑﻪ ﺷﻜﻞ ﮔﺮدﻏﺒﺎر از ﻛﻮره ﺑﻴﺮون رﻳﺨﺘﻪ ﻣﻴﺸﻮد‪ .‬اﻳﻦ ﻧﻮع ﺗﺸﻮﻳﻪ در‬
‫ﻣﺎﺷﻴﻨﻬﺎي ﻣﺨﺼﻮﺻﻲ اﻧﺠﺎم ﻣﻲ ﺷﻮد ﻛﻪ ﺗﺸﻮﻳﻪ و زﻳﻨﺘﺮ ﻫﻤﺰﻣﺎن اﻧﺠﺎم‬
‫ﻣﻴﮕﻴﺮد‪.‬‬
‫ﮕ د‬
‫• در ﻣﻮرد ﺳﻨﮓ ﻣﻌﺪن ﺳﺮب و ﮔﺎﻫﻲ ﻫﻢ روي از اﻳﻦ روش اﺳﺘﻔﺎده ﻣﻲ ﺷﻮد‪.‬‬
‫ﻣﺎﺷﻴﻦ ﻣﻮرد اﺳﺘﻔﺎده ‪ Dwight-Lioyd‬ﻧﺎ م دارد‪ .‬ذرات ﺑﺴﻴﺎر ﻧﺮم‬
‫ﻛﻨﺴﺎﻧﺘﺮه ﺑﻪ ﺿﺨﺎﻣﺖ ‪ 50-15‬ﺳﺎﻧﺘﻴﻤﺘﺮ ﺑﺮ روي ﺗﺴﻤﻪ ﻧﻘﺎﻟﻪ رﻳﺨﺘﻪ ﻣﻲ ﮔﺮدد‬
‫و ﻛﻨﺴﺎﻧﺘﺮه ﺗﻮﺳﻂ ﻣﺸﻌﻞ ﮔﺮم ﺷﺪه و ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺳﻴﺴﺘﻢ ﻣﻜﺶ ﻫﻮا در وﺳﻂ‬
‫خ داده و زﻳﻨﺘﺮ ﺷﺪن ﻣﻮاد‬
‫ﻧﻮار ﻣﺤﺘﺮق ﻣﻲ ﺷﻮد‪ .‬ذوب ﺳﻄﺤﻲ در ﻣﻮاد رخ‬
‫اﻧﺠﺎم ﻣﻲ ﭘﺬﻳﺮد‪ .‬ﭘﺲ از ﺳﺮد ﺷﺪه ﻣﻮاد زﻳﻨﺘﺮ ﺷﺪه داﻧﻪ ﺑﻨﺪي ﻣﻲ ﺷﻮﻧﺪ‪ .‬ﺑﺎ‬
‫ﺗﻮﺟﻪ ﺑﻪ وﺟﻮد ﮔﻮﮔﺮد در ﻣﻮاد ﺷﺎرژي اﻳﻦ ﻧﻮع ﺗﺸﻮﻳﻪ ﻧﻴﺎزي ﺑﻪ ﺳﻮﺧﺖ‬
‫اﺿﺎﻓﻲ ﻧﺪارد‪ ،‬اﻟﺒﺘﻪ در ﻣﻮرد ﺳﻨﮓ ﻣﻌﺪﻧﻬﺎي اﻛﺴﻴﺪي)ﺳﻨﮓ آﻫﻦ( ﺑﺎﻳﺪ‬
‫ﺳﻮﺧﺖ اﺿﺎﻓﻪ ﻛﺮد‪.‬‬
‫ﺑﺮاي ﺗﺸﻮﻳﻪ ﺳﻮﻟﻔﻴﺪ روي ﻫﻢ ﻣﻲ ﺗﻮان از اﻳﻦ دﺳﺘﮕﺎه و ﻫﻢ دﺳﺘﮕﺎه ﺗﺸﻮﻳﻪ‬
‫•‬
‫‪39‬‬
‫ﭼﻨﺪ ﻃﺒﻘﻪ اﺳﺘﻔﺎده ﻛﺮد‪.‬‬
‫‪40‬‬
‫جلسه ‪٢‬‬
‫‪٢٠‬‬
٠٧/٢٩/١۴٣۵
Roasting Objectives:
¾Conversion to Oxides (for Pyrometallurgy)
¾Formation of Sulphates (Hydrometallurgy)
Thermodynamics of
Roasting represent which one
can be attained (‫ گوگرد و فلز‬،‫)اجزای اصلی در فرآيند تشويه اکسيژن‬
Duration of roasting depends on Kinetics
Predominance area diagrams(Stability Diagrams):
Isothermal diagrams ( ranges of gas composition that each
phase can exist singly or in equilibrium with others)
‫دياگرامھای پايداری به ما نشان می دھند که در يک دمای خاص چه فاز جامدی با‬
.‫فاز گازی )و با ترکيب مشخص از اکسيژن و گوگرد( در تعادل قرار دارد‬
In Metal-Sulphur-Oxygen system maximum 5 phases
at given T and fixed total pressure Æ 3 condensed
This diagram shows the ranges of gas compositions (partial
phasesof
and
one dioxide
gas phase(
mixture of
gases
is one
pressures
sulfur
and oxygen)
over
which
eachphase)
phase
(M, MS, MO, MSO4) exists singly, or in equilibrium with another
phase or phases.
41
Application of the phase rule to the three-component
(ternary) system M–S–O shows that at a fixed temperature
and a given total pressure of the gas phase, a maximum
of three condensed phases can co-exist
This situation is indicated by
y the p
point of co-existence of
M, MO and MS, as well as by the point at which MS, MO
and MSO4 co-exist in the figure.
42
٢١
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
How to draw a diagram:
1- knowing phases (solid phases: MS, MO, MSO4, M) gas phases(
O2, SO2,S2,SO3) ‫ھر جامد يک فاز و مخلوط گازھا ھم يک فاز‬
2- writing possible reactions:
3- correlation between variables in equilibrium constant
4 draw in appropriate coordination
4In Metal-Sulphur-Oxygen system maximum 5 phases
at given T and fixed total pressure Æ 3 condensed
phases and one gas phase( mixture of gases is one phase)
possible reactions:
43
44
٢٢
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Line with slope 1
45
MS
3
MSO4
MSO4
MS
4
2
MO
MS
1
M
MO
5
Constant Temperature
46
٢٣
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
3
MSO4
MS
4
2
MO
MS
1
M
MO
5
Constant Temperature
47
Application:
1- at different temperature and different kind of metalsÆ
same shape of diagramÆ only different slope of line and
area
2- to attain proper phaseÆ change T and Partial pressure of
O2 and SO2
in practical. Instead of oxygen, air used for Roasting
in industrial furnaces
PO2=0.2 atmÆ PSO2=0.2
As a result, in roasting the best controlling factor is T
3- effect of activity:
Pure materials a=1, impure a<1Æ same shape with small
shifting of the lines Æ change the area
Decreasing activity of a phasesÆ broadening the
predominance area
48
٢۴
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫ﻛﺎرﺑﺮد دﻳﺎﮔﺮام ﻫﺎي ﭘﺎﻳﺪاري‬
‫از آﻧﺠﺎﻳﻲ ﻛﻪ ﻣﻨﺎﻃﻖ ﭘﺎﻳﺪاري ﻓﻠﺰات ﻣﺨﺘﻠﻒ داراي ﻣﻮﻗﻌﻴﺘﻬﺎي ﻣﺘﻔﺎوﺗﻲ ﻫﺴﺘﻨﺪ‪،‬‬
‫در ﻧﺘﻴﺠﻪ واﻛﻨﺸﻬﺎ در ﺳﻨﮓ ﻣﻌﺪن ﺳﻮﻟﻔﻴﺪي ﭼﻨﺪ ﻓﻠﺰ ﻣﺨﺘﻠﻂ ﺑﺮاي ﺗﻤﺎم آن‬
‫ﻓﻠﺰﻫﺎ ﻫﻤﺰﻣﺎن رخ ﻧﺨﻮاﻫﺪ داد و و ﺑﺮﺧﻲ از واﻛﻨﺸﻬﺎ ﻣﻤﻜﻦ اﺳﺖ اﺻﻼ رخ‬
‫ﻧﻧﺪﻫﻨﺪ‪.‬‬
‫ﻣﺜﻼ در ﻣﻮرد ﻣﺨﻠﻮط ﺳﻮﻟﻔﻴﺪي ‪ ،Fe-Cu‬در اﺑﺘﺪا اﻛﺴﻴﺪ ﺷﺪن ﺳﻮﻟﻔﻴﺪ آﻫﻦ‬
‫رخ داده و ﻓﺎز ‪ Fe3O4‬ﺗﺸﻜﻴﻞ ﻣﻲ ﺷﻮد و ﻣﺲ ﺑﺼﻮرت ﺗﺮﻛﻴﺐ ﺳﻮﻟﻔﻴﺪي‬
‫‪ Cu2S‬ﺑﺎﻗﻲ ﻣﻲ ﻣﺎﻧﺪ‪.‬‬
‫اﻛﺴﻴﺪاﺳﻴﻮن ﺑﻴﺸﺘﺮ ﺳﺒﺐ ﺗﺒﺪﻳﻞ ‪ Fe3O4‬ﺑﻪ ‪ Fe2O3‬و ‪ Cu2S‬ﺑﻪ ‪ Cu2O‬و‬
‫‪ CuO‬ﻣﻲ ﺷﻮد‪ .‬در دﻣﺎﻫﺎي زﻳﺮ ‪ 750C‬و در ﻓﺸﺎرﻫﺎي ﺗﻘﺮﻳﺒﺎ ﻳﻜﺴﺎن‬
‫اﻛﺴﻴﮋن و دي اﻛﺴﻴﺪ ﮔﻮﮔﺮد‪ ،‬اﻛﺴﻴﺪ ﻣﺲ)‪ (CuO‬ﻣﻤﻜﻦ اﺳﺖ ﺑﻪ‬
‫‪ CuO.CuSO4‬و ‪ CuSO4‬ﺗﺒﺪﻳﻞ ﺷﻮد‪ ،‬در ﺣﺎﻟﻴﻜﻪ ‪ Fe2O3‬در اﻳﻦ ﺷﺮاﻳﻂ‬
‫ﺳﻮﻟﻔﺎت ﺗﺸﻜﻴﻞ ﻧﺨﻮاﻫﺪ داد‪.‬‬
‫‪49‬‬
‫‪ CuO‬و ‪Cu2O‬‬
‫‪Fe2O3‬‬
‫‪Fe3O4‬‬
‫‪50‬‬
‫جلسه ‪٢‬‬
‫‪٢۵‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫ﺗﺎﺛﻴﺮ دﻣﺎ‬
‫)ﺛﺎﺑﺖ =‪( P SO2‬‬
‫ﻃﺒﻖ اﻳﻦ ﺷﻜﻞ در دﻣﺎﻫﺎي ﻣﺘﻮﺳﻂ ﻫﺮ دو ﻓﺎز ‪ MeS‬و ‪ MeO‬ﻣﻲ ﺗﻮاﻧﻨﺪ ﻫﻤﺰﻣﺎن وﺟﻮد‬
‫داﺷﺘﻪ ﺑﺎﺷﻨﺪ‪ ،‬در ﺣﺎﻟﻴﻜﻪ در دﻣﺎﻫﺎي ﺑﺎﻻﺗﺮ ﺑﺎ اﻧﺠﺎم واﻛﻨﺶ ‪ Me‬و ‪ SO2‬ﺣﺎﺻﻞ ﺧﻮاﻫﺪ‬
‫ﺷﺪ‪ .‬اﻳﻦ دﻣﺎ ﺑﺮا ي ﻓﻠﺰات ﻣﺨﺘﻠﻒ ﻣﺘﻔﺎوت ﺧﻮاﻫﺪ ﺑﻮد ﺑﺮاي ﻧﻤﻮﻧﻪ در ﻣﻮرد ﻓﻠﺰاﺗﻲ ﻫﻤﺎﻧﻨﺪ‬
‫اﻳﻂ ﺗﺸﻮﻳﻪ ﺑﻪ وﻗﻮع ﻣﻣﻲ‬
‫ﻳﻌﻨﻲ واﻛﻨﺶ ﺗﺤﺖ ﺷﺷﺮاﻳﻂ‬
‫زﻳﺮ ‪ 1000‬درﺟﻪ ﺧﻮاﻫﺪ ﺑﻮد‪ ،‬ﻳﻌﻨ‬
‫ب دﻣﺎ زﻳ‬
‫ﻣﻣﺲ‪ ،،‬ﺳﺮب‬
‫ﭘﭙﻴﻮﻧﺪد و در ﻣﻮرد ﻓﻠﺰاﺗﻲ ﭼﻮن ﻧﻴﻜﻞ‪ ،‬روي و آﻫﻦ دﻣﺎي واﻛﻨﺶ ﺑﺴﻴﺎر ﺑﺎﻻﺗﺮ ﺧﻮاﻫﺪ‬
‫ﺑﻮد ﻛﻪ از ﻧﻘﻄﻪ ﻧﻈﺮ ﻋﻤﻠﻲ واﻛﻨﺶ ﻏﻴﺮ ﻣﻤﻜﻦ ﺧﻮاﻫﺪ ﺑﻮد‪.‬‬
‫در ﺷﻜﻞ دو ﻣﺴﻴﺮ ﻣﻤﻜﻦ ﺑﺮاي ﻓﺮآﻳﻨﺪ ﺗﺸﻮﻳﻪ رﺳﻢ ﺷﺪه اﺳﺖ ﻛﻪ ﻣﺴﻴﺮ ﻣﻌﻤﻮل ﺗﺸﻮﻳﻪ ﺧﻂ ﭼﻴﻦ‬
‫ﻣﺸﺨﺺ ﺷﺪه ﺑﺎ ﺣﺮف ‪ a‬ﻣﻲ ﺑﺎﺷﺪ‪ .‬ﻃﺒﻖ اﻳﻦ ﻣﺴﻴﺮ ﻋﻤﺪه ﻋﻤﻞ ﺗﺸﻮﻳﻪ از ﻃﺮﻳﻖ ﺗﺒﺪﻳﻞ ﺳﻮﻟﻔﻴﺪ ﺑﻪ‬
‫ﻣﻘﺪاري‬
‫ﺗﺸﻜﻴﻞ ﻣﻘﺪا‬
‫ﻓﺮآﻳﻨﺪ ﺑﺎ اﻓﺖ دﻣﺎ و ﺗﺸﻜ ﻞ‬
‫ﺖ ﭘﺎﻳﺎن ﻓ آﻳﻨﺪ‬
‫ﻓﺖ ﺑﻪ ﺳﻤﺖ‬
‫ﭘﻴﺸﺮﻓﺖ‬
‫ﻣﻴﺪﻫﺪ‪ .‬ﺑﺎ ﭘ ﺸ‬
‫خ ﻣ ﺪﻫﺪ‬
‫اﻛﺴﻴﺪﺪ ﺑﺎ اﻓﺰاﻳﺶ دﻣﺎ رخ‬
‫اﻛ‬
‫ﺳﻮﻟﻔﺎت ﻫﻤﺮاه ﻫﺴﺘﻴﻢ‪ .‬ﻃﺒﻖ ﺧﻂ ﭼﻴﻦ ﻣﺴﻴﺮ ‪ b‬اﺑﺘﺪا ﺳﻮﻟﻔﺎت در دﻣﺎي ﭘﺎﺋﻴﻦ ﺷﻜﻞ ﻣﻲ ﮔﻴﺮد‪ .‬ﺑﺎ‬
‫ورود ﺣﺮارت ﺑﻴﺸﺘﺮ‪ ،‬دﻣﺎ اﻓﺰاﻳﺶ ﻳﺎﻓﺘﻪ و ﺳﻮﻟﻔﺎت ﺗﺠﺰﻳﻪ ﻣﻲ ﺷﻮد‪.‬‬
‫در ﻧﻤﻮدار ‪ logpO2‬ﺑﺮ ﺣﺴﺐ ﻋﻜﺲ دﻣﺎي ﻣﻄﻠﻖ و ﺑﺮاي دو ﻓﺸﺎر ﺟﺰﺋﻲ ‪ 1 )SO2‬و ‪/1‬‬
‫‪ (0‬اﺗﻤﺴﻔﺮ ﻣﺸﺎﻫﺪه ﻣﻲ ﺷﻮد ﻛﻪ ﺑﻪ ﻏﻴﺮ از واﻛﻨﺸﻬﺎي ‪ 4‬و ‪ ،7‬دﻳﮕﺮ واﻛﻨﺸﻬﺎي ﻣﺘﺎﺛﺮ از‬
‫ﺗﻐﻴﻴﺮ ‪ PSO2‬ﻫﺴﺘﻨﺪ و ﺑﺎ ﺗﻐﻴﻴﺮ اﻳﻦ ﻣﻘﺪار ﺑﻪ ﺳﻤﺖ ﺑﺎﻻ ﻳﺎ ﭘﺎﺋﻴﻦ ﻣﻨﺘﻘﻞ ﻣﻲ ﺷﻮﻧﺪ‪.‬‬
‫اثر دما‬
‫‪52‬‬
‫جلسه ‪٢‬‬
‫‪٢۶‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪Kinetic of Roasting‬‬
‫)‪Roasting is gas reduction of oxides ( Solid+gasÆSolid+gas‬‬
‫‪Gas(O2) should reach inner layer of ore to react.‬‬
‫‪e.g.: possibility of CuSO4 presence in the core of ore‬‬
‫‪1- transfer O2 to surface of particle‬‬
‫‪1‬‬
‫‪2- penetration of O2 into oxide layer‬‬
‫‪3- reaction between sulphide and O2‬‬
‫‪4- leaving SO2 the oxide layer‬‬
‫‪5- removing SO2 the surface‬‬
‫‪SO2‬‬
‫‪MeO‬‬
‫‪O2‬‬
‫‪O2‬‬
‫‪MeS‬‬
‫‪SO2‬‬
‫‪SO2‬‬
‫‪Problems: 1‬‬‫‪1 size of particles: un-reacted‬‬
‫‪un reacted parts in the core‬‬
‫‪Difficultly for Oxygen to reach the inner layer and for SO2 to leave‬‬
‫)‪Increase temperature ( technical limitations‬‬
‫‪2- Saturation of atmosphere with produced gas (SO2): injection‬‬
‫‪fresh air‬‬
‫‪53‬‬
‫سينتيک تشويه‬
‫ﻋﻤﻞ ﺗﺸﻮﻳﻪ ﻋﺒﺎرﺗﺴﺖ از واﻛﻨﺶ ﻳﻚ ﺟﺎﻣﺪ ﺑﺎ ﻳﻚ ﻓﺎز ﮔﺎزي و ﺗﺸﻜﻴﻞ ﻳﻚ ﺟﺎﻣﺪ و ﮔﺎز‬
‫دﻳﮕﺮ)ﺑﻪ ﻋﺒﺎرﺗﻲ اﺣﻴﺎء ﮔﺎزي اﻛﺴﻴﺪﻫﺎ (‪.‬‬
‫در ﺗﺸﻮﻳﻪ ‪ FeS‬ﻻﻳﻪ ﻫﺎي ﻣﺮﻛﺰي از اﻛﺴﻴﺪ آﻫﻦ ﺷﺎﻣﻞ ‪ Fe2O3‬و ‪ Fe3O4‬ﺧﻮاﻫﺪ ﺑﻮد و در‬
‫ﻣﻮرد ﺗﺸﻮﻳﻪ ﺳﻮﻟﻔﻴﺪ ﻣﺲ اﻳﻦ ﻻﻳﻪ ﻫﺎ ﻣﺘﺸﻜﻞ از ﻻﻳﻪ ﻫﺎي ‪ Cu2O‬و ‪ CuO‬و ﺣﺘﻲ‬
‫ﺗﺸﻮﻳﻪ ﺷﺪه اﺳﺖ‪،‬‬
‫ن ﻮﻳ‬
‫از آن‬
‫ﻲز‬
‫ن ﻛﻪ ﺑﺑﺨﺸﻲ‬
‫ﻳﻦ درر درر ﻳﻳﻚ ﺳﻨﮓ ﻣﻌﺪن‬
‫ﺑﻨﺎﺑﺮاﻳﻦ‬
‫ﺑﻮد‪ .‬ﺑ ﺑﺮ‬
‫ﺧﻮاﻫﺪ ﺑﻮ‬
‫‪ CuSO4‬ﻮ‬
‫اﻣﻜﺎن ﺣﻀﻮر ﺳﻮﻟﻔﻴﺪﻫﺎي واﻛﻨﺶ ﻧﺪاده و ﺑﻪ ﻓﺮم ﺳﻮﻟﻔﺎت ﻫﻨﻮز وﺟﻮد داﺷﺘﻪ ﺑﺎﺷﺪ‪ .‬در ﻋﻤﻞ‬
‫ﺗﺸﻮﻳﻪ اﻛﺴﻴﮋن ﺑﺎﻳﺴﺘﻲ ﺑﻪ ﻣﺎده اوﻟﻴﻪ رﺳﻴﺪه و ﮔﺎز ﺣﺎﺻﻠﻪ ﺑﺎﻳﺴﺘﻲ از ﻣﺤﻴﻂ ﺗﺨﻠﻴﻪ ﺷﻮد‪ .‬ﭘﺲ‬
‫ﺿﺨﺎﻣﺖ ﻣﻮاد ﻓﺎﻛﺘﻮر ﻣﻮﺛﺮي ﺑﺮ اﻳﻦ ﻓﺮآﻳﻨﺪ ﺧﻮاﻫﺪ ﺑﻮد‪ .‬ﻫﺮ ﭼﻪ ﺿﺨﺎﻣﺖ ﺑﻴﺸﺘﺮ ﺑﺎﺷﺪ‪،‬‬
‫رﺳﻴﺪن اﻛﺴﻴﮋن ﺑﻪ ﻣﻮاد و ﻫﻤﭽﻨﻴﻦ ﺧﺮوج ‪ SO2‬ﻣﺸﻜﻞ ﺗﺮ ﺧﻮاﻫﺪ ﺑﻮد و در ﻧﺘﻴﺠﻪ ﻛﺎﻫﺶ در‬
‫ﺳﺮﻋﺖ اﻧﺠﺎم واﻛﻨﺶ رخ ﻣﻲ دﻫﺪ‪.‬‬
‫راه ﺣﻞ ﺑﺮاي اﻳﻦ ﻣﻮرد رﻳﺰداﻧﻪ ﻛﺮدن ﻣﻮاد ﺑﺮاي ﺗﻤﺎس ﺑﻴﺸﺘﺮ و آﺳﺎﻧﺘﺮ ﻣﻮاد ﺑﺎ اﻛﺴﻴﮋن‬
‫اﺳﺖ‪ .‬راه دوم ﺧﺎرج ﻛﺮدن ‪ SO2‬از ﻣﺤﻴﻂ ﻛﺎري اﺳﺖ‪ ،‬زﻳﺮا ﺑﺎ وﺟﻮد ‪ SO2‬در اﻃﺮاف‬
‫ﻣﺤﺼﻮﻻت ﻓﺮآﻳﻨﺪ‪ ،‬ﺳﺮﻋﺖ واﻛﻨﺶ ﻛﺎﻫﺶ ﻣﻲ ﻳﺎﺑﺪ‪ .‬ﭘﺲ ﺑﺎ دﻣﻴﺪن اﻛﺴﻴﮋن و ﻫﻮاي ﺗﺎزه ﻣﻲ‬
‫ﺗﻮان ﻏﻠﻈﺖ دي اﻛﺴﻴﺪ ﮔﻮﮔﺮد را ﻛﺎﻫﺶ داده و ﺳﺮﻋﺖ واﻛﻨﺶ را ﺑﺎﻻ ﺑﺒﺮﻳﻢ‪.‬‬
‫درﺟﻪ ﺣﺮارت ﻫﻢ ﻋﺎﻣﻞ ﻣﻮﺛﺮي ﺑﺮ ﺳﺮﻋﺖ واﻛﻨﺶ ﺑﻮده‪ ،‬ﺑﻪ ﻧﺤﻮي ﻛﻪ ﺑﺎ اﻓﺰاﻳﺶ‬
‫ﺳﺮﻋﺖ اﻓﺰاﻳﺶ ﻣﻲ ﻳﺎﺑﺪ‪.‬‬
‫دﻣﺎ ‪54‬‬
‫جلسه ‪٢‬‬
‫‪٢٧‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫روش ﻫﺎي ﺗﺸﻮﻳﻪ‬
‫• ‪ -1‬ﺳﺎده ﺗﺮﻳﻦ روش ﺗﺸﻮﻳﻪ و ﻗﺪﻳﻤﻲ ﺗﺮﻳﻦ آﻧﻬﺎ ‪ heap roasting‬ﺑﻮده ﻛﻪ در اﻳﻦ روش‬
‫ﻣﻮاد ﺳﻮﻟﻔﻴﺪي را ﺑﻪ ﺻﻮرت ﺗﭙﻪ اي درآورده و زﻳﺮ اﻳﻦ ﺗﻮده ﺑﺎ دادن اﻧﺮژي روﺷﻦ ﺷﺪه‬
‫ﻃﻲ ﭼﻨﺪ روز ﺗﺸﻮﻳﻪ ﺻﻮرت ﻣﻲ ﮔﺮﻓﺘﻪ اﺳﺖ‪.‬‬
‫• ‪ -2‬ﺗﺸﻮﻳﻪ اﺟﺎﻗﻲ ‪ :Klin roasting‬در اﻳﻦ روش ﻣﻮاد روي ﺻﻔﺤﺎت ﻣﺸﺒﻜﻲ ﻗﺮار‬
‫ﮔﻴﺮﻧﺪ‪ .‬ﺑﻪ‬
‫ﻗﺮار ﻣﻲ ﮔ ﻧﺪ‬
‫ﺗﻤﺎس ﻗ ا‬
‫ﻣﻮاد ددر ﺗ ﺎ‬
‫ﺷﻮده و ﺑﺎ اد‬
‫دﻣﻴﺪه ﺷ د‬
‫ﺻﻔﺤﺎت د ﺪ‬
‫زﻳﺮ اﻳﻦ ﺻﻔ ﺎت‬
‫ﮔﺮم از زﻳ‬
‫ﻫﻮاي ﮔ م‬
‫ﮔﺮﻓﺘﻪ و ﻫ ا‬
‫ﮔ ﻓﺘﻪ‬
‫ﻋﻠﺖ ﮔﺮﻣﺎزا ﺑﻮدن واﻛﻨﺸﻬﺎي ﺗﺸﻮﻳﻪ ﻣﻲ ﺗﻮان ﺑﺎ ﺷﺮوع واﻛﻨﺶ دﻣﺶ ﻫﻮا را ﻣﺘﻮﻗﻒ ﻧﻤﻮد‪،‬‬
‫اﻟﺒﺘﻪ ﺳﺮﻋﺖ واﻛﻨﺶ ﻛﻢ ﺧﻮاﻫﺪ ﺑﻮد‪ .‬اﻳﻦ ﻛﻮره ﻫﺎ ﺗﻜﺒﺎر ﺑﻮده و ﻣﻮاد ﺷﺎرژ ﺷﺪه ﺑﻪ آن درﺷﺖ‬
‫ﻣﻲ ﺑﺎﺷﺪ ﺑﻪ ﻫﻤﻴﻦ دﻟﻴﻞ ﻣﻐﺰ ﻣﻮاد ﺗﺸﻮﻳﻪ ﻧﻤﻲ ﺷﻮد و ﺣﺴﻦ اﻳﻦ روش ﺳﺎدﮔﻲ آن اﺳﺖ ‪batch‬‬
‫‪roasting‬‬
‫از ﺑﺑﺎﻻي‬
‫ي‬
‫ﻣﻮاد ز‬
‫ﺣﺎﻟﻴﻜﻪ ﻮ‬
‫ﻛﻮره ﻫﺎ درر ﻴ‬
‫ﻮع ﻮر‬
‫ﻳﻦ ﻧﻮع‬
‫دوارر ))‪ :(Rotaryy klin‬درر اﻳﻦ‬
‫ي و‬
‫ﻛﻮره ﻫﺎي‬
‫• ‪ -3‬ﻮر‬
‫اﺳﺘﻮاﻧﻪ وارد ﺷﺪه ﺑﺎ ﻫﻮاي ﮔﺮم ﺣﺎﺻﻞ از ﻣﺸﻌﻞ از ﭘﺎﺋﻴﻦ اﺳﺘﻮاﻧﻪ ﺑﺮﺧﻮرد ﻣﻲ ﻛﻨﺪ‪.‬ﭼﺮﺧﺶ‬
‫اﺳﺘﻮاﻧﻪ ﺑﻪ ﺣﻮل ﻣﺤﻮرش و ﺷﻴﺒﺪار ﺑﻮدن آن ﺑﻪ ﺣﺮﻛﺖ ﻣﻮاد ﺑﻪ ﺳﻤﺖ ﭘﺎﺋﻴﻦ ﻛﻤﻚ ﻣﻲ ﻛﻨﺪ‪.‬‬
‫اﻳﻦ ﻧﻮع ﻛﻮره ﻫﺎ در ﭘﺨﺖ ﺳﻴﻤﺎن ﻫﻢ ﻛﺎرﺑﺮد دارﻧﺪ‪.‬ﻛﺎر ﻛﻮره ﭘﻴﻮﺳﺘﻪ ﺑﻮده و ﻣﺸﻜﻞ اﺻﻠﻲ‬
‫ﺧﺮوج ﻣﻮاد ﺑﻪ ﺻﻮرت ﮔﺮد و ﻏﺒﺎر و ﻫﻤﭽﻨﻴﻦ ﺳﺎﺋﻴﺪه ﺷﺪن ﺟﺪاره اﺳﺘﻮاﻧﻪ دراﺛﺮ ﺗﻤﺎس ﺑﺎ‬
‫‪ 55‬ﻣﻮاد اﺳﺖ و ﻣﺰﻳﺖ آن ﭘﻴﻮﺳﺘﻪ ﺑﻮده آن و ﺳﺮﻋﺖ ﺗﻮﻟﻴﺪ ﺑﺎﻻ ﻣﻲ ﺑﺎﺷﺪ‪.‬‬
‫ دﺳﺘﮕﺎه ﺗﺸﻮﻳﻪ ﭼﻨﺪ ﻃﺒﻘﻪ‪ :‬ﻣﺘﺸﻜﻞ از ﻳﻚ اﺳﺘﻮاﻧﻪ ﻋﻤﻮدي‬‫ﺑﻮده ﻛﻪ ﺣﺎوي ﻃﺒﻘﺎت ﻣﺨﺘﻠﻒ و ﻳﻚ ﻣﺤﻮر ﭼﺮﺧﺶ ﻛﻨﻨﺪه ﻣﻲ‬
‫ﺑﺎﺷﺪ‪ .‬ﻃﺒﻘﻪ ﻫﺎ درون اﻳﻦ اﺳﺘﻮاﻧﻪ ﻗﺮار ﮔﺮﻓﺘﻪ و ﻛﻨﺴﺎﻧﺘﺮه‬
‫از ﺑﺎﻻي ﻛﻮره ﺷﺎرژ ﻣﻲ ﺷﻮد‪ .‬ﺑﺎ ﺣﺮﻛﺖ ﺑﺎزو و ﭼﺮﺧﺶ آن‬
‫ﺣﺮﻛﺖ ﻣﻮاد را در ﻃﺒﻘﺎت و ﺑﻪ ﺳﻤﺖ ﭘﺎﺋﻴﻦ ﺧﻮاﻫﻴﻢ داﺷﺖ‪.‬‬
‫ﻫﻮا ﻫﻢ از ﭘﺎﺋﻴﻦ ﻛﻮره و ﻳﺎ ﻃﺒﻘﺎت ﺑﻪ داﺧﻞ دﻣﻴﺪه ﻣﻲ ﺷﻮد‪.‬‬
‫ﮔﺎزﻫﺎي ﻴ‬
‫ﻧﻔﻮذ ز ي‬
‫ﺳﺮﻋﺖ ﻮ‬
‫ﺑﺴﺘﮕﻲ ﺑﺑﻪ ﺮ‬
‫ﺗﺸﻮﻳﻪ ﺑ ﻲ‬
‫ﺳﺮﻋﺖ ﻮﻳ‬
‫ﺮ‬
‫اﻛﺴﻴﺪ ﻛﻨﻨﺪه‬
‫ﺑﻪ داﺧﻞ و ﺧﺮوج ﮔﺎزﻫﺎي ﻧﺎﺷﻲ از ﺗﺸﻮﻳﻪ از درون ﺗﻮده ﺑﻪ‬
‫ﺧﺎرج آن دارد‪.‬‬
‫در اﻳﻦ دﺳﺘﮕﺎه ﻣﻲ ﺗﻮان ﻣﻘﺎدﻳﺮ ﺑﺴﻴﺎر زﻳﺎدي از‬
‫ﻛﻨﺴﺎﻧﺘﺮه رﻳﺰ و درﺷﺖ را ﻗﺮار داد‪ .‬ﺳﺮﻋﺖ ﮔﺎزﻫﺎ‬
‫در اﻳﻦ ﺳﻴﺴﺘﻢ ﺑﺴﻴﺎر ﻛﻢ ﺑﻮده و ﺧﻄﺮ ﭘﺎﺷﻴﺪن ذرات‬
‫اﺳﺖ‪ .‬اﺷﻜﺎل اﻳﻦ‬
‫ﺧﻴﻠﻲ ﭘﺎﺋﻴﻦ ا ﺖ‬
‫ﺧﺎرج ﺧﻴﻠ‬
‫ﻛﻨﺴﺎﻧﺘﺮهه ﺑﻪ ﺧﺎر‬
‫ﻛﻨ ﺎﻧﺘ‬
‫روش در ﺗﻤﺎس ﻛﻢ ذرات ﻛﻨﺴﺎﻧﺘﺮه و ﮔﺎزﻫﺎي‬
‫اﻛﺴﻴﺪ ﻛﻨﻨﺪه اﺳﺖ ﻛﻪ ﺑﺎ ﻛﺎﻫﺶ ﺗﻌﺪاد ﻃﺒﻘﺎت و در‬
‫ﻧﺘﻴﺠﻪ اﻓﺰاﻳﺶ ﻓﺎﺻﻠﻪ ﺳﻘﻮط ذرات از ﻳﻚ ﻃﺒﻘﻪ ﺑﻪ‬
‫ﻃﺒﻘﻪ دﻳﮕﺮ ﺳﻌﻲ در رﻓﻊ اﻳﻦ ﻣﺸﻜﻞ ﻧﻤﻮده اﻧﺪ‪.‬‬
‫‪ 56‬ﻛﻢ از دﻳﮕﺮ ﻣﺤﺪودﻳﺘﻬﺎي اﻳﻦ روش اﺳﺖ‪.‬‬
‫ﺳﺮﻋﺖ‬
‫جلسه ‪٢‬‬
‫‪٢٨‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫دﺳﺘﮕﺎﻫﻬﺎي ﺗﺸﻮﻳﻪ‬
‫دﺳﺘﮕﺎه ﺗﺸﻮﻳﻪ ﺑﺎ ﺑﺴﺘﺮ ﺷﻨﺎور‪:‬‬
‫در اﻳﻦ دﺳﺘﮕﺎه ﻣﻮاد ﭘﻮدري از درﻳﭽﻪ‬
‫ﻣﻮاد ددر‬
‫ﭘﺎﺋﻴﻦ ﻣ اد‬
‫ﻫﻮا از ﭘﺎﺋ ﻦ‬
‫ﺷﺪه و ﺑﺎ دﻣﺶ ﻫ ا‬
‫واردد ﺷﺪ‬
‫ا‬
‫ﻓﻀﺎي داﺧﻠﻲ دﺳﺘﮕﺎه ﻣﻌﻠﻖ ﺷﺪه و ﺗﺸﻮﻳﻪ‬
‫اﻧﺠﺎم ﻣﻲ ﺷﻮد‪ .‬ﺳﺮﻋﺖ ﺗﺸﻮﻳﻪ ﺑﺎﻻﺳﺖ‪.‬‬
‫ذرات درﺷﺖ ﺗﺮ از ﺑﺨﺶ ﭘﺎﺋﻴﻨﻲ ﻛﻮره‬
‫ﺧﺎرج ﻣﻲ ﺷﻮﻧﺪ‪ .‬اﺳﺘﻔﺎده از ﻏﺒﺎرﮔﻴﺮ‬
‫ﻻزم اﺳﺖ‪ .‬اﻧﺪازه ذرات ﺑﻴﻦ ‪ 0/005‬و‬
‫‪ 0/05‬ﺳﺎﻧﺘﻲ ﻣﺘﺮ اﺳﺖ‪.‬‬
‫‪57‬‬
‫ﻋﻤﻞ ﺗﺸﻮﻳﻪ واﻛﻨﺸﻲ ﮔﺮﻣﺎزا اﺳﺖ‬
‫و ﺑﺮاي ﺷﺮوع واﻛﻨﺶ ﻻزم اﺳﺖ‬
‫ﻛﻪ اﻧﺮژي اوﻟﻴﻪ ﺑﻪ ﺳﻴﺴﺘﻢ داده ﺷﻮد‬
‫ﺗﺎ اﺣﺘﺮاق آﻏﺎز ﺷﺪه و ﺑﻌﺪ ﺑﻪ ﺻﻮرت‬
‫ﺧﻮدﺑﺨﻮدي واﻛﻨﺶ اداﻣﻪ ﻳﺎﻓﺘﻪ و‬
‫ﮔﺮﻣﺎ ﻫﻢ آزاد ﻣﻲ ﻛﻨﺪ‪ .‬درﺟﻪ‬
‫ﺣﺮارت اﺣﺘﺮاق ﺑﺮاي ﭘﺎره اي از‬
‫ﻣﻮاد ﻣﻌﺪﻧﻲ ﺳﻮﻟﻔﻴﺪي در ﺟﺪول‬
‫آورده ﺷﺪه اﺳﺖ‪ .‬اﻳﻦ درﺟﻪ ﺣﺮارت‬
‫ﺗﺎ ﺣﺪ زﻳﺎدي ﻣﺒﻴﻦ درﺟﻪ ﺣﺮارت‬
‫ﻻزم ﺑﺮاي ﺗﺸﻮﻳﻪ در ﺑﺴﺘﺮ ﺳﻴﺎل‬
‫اﺳﺖ‪.‬‬
‫‪58‬‬
‫جلسه ‪٢‬‬
‫‪٢٩‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫ﮔﺪاز‬
‫‪Smelting‬‬
‫‪• Melting and Separation of the charge into‬‬
‫‪2 immiscible liquid layers‬‬
‫‪Slag‬‬
‫‪Matte / Metal‬‬
‫‪Slag‬‬
‫‪Matte‬‬
‫‪Matte: Mixture of molten sulphides of heavy metals and‬‬
‫‪produced on smelting of metal sulphide concentrates‬‬
‫ﮔﻮﮔﺮدد ﺑﺼﻮرت ﺳﻮﻟﻔﻴﺪﻫﺎي ﻣﺬاب اﺳﺖ‬
‫ﻣﺨﻠﻮﻃﻲ از ﻓﻠﺰات ﺳﻨﮕﻴﻦ و ﮔﻮﮔ‬
‫ﻣﺎت ﻣﺨﻠﻮﻃ‬
‫ﻛﻪ ﻣﻌﻤﻮﻻ ﺑﻪ ﻫﻤﺮاه ﻣﻘﺪاري اﻛﺴﻴﺪ ﻣﻲ ﺑﺎﺷﺪ‪ .‬ﻣﺎت از ذوب ﻛﺮدن ﺳﻨﮕﻬﺎي‬
‫ﻣﻌﺪﻧﻲ ﺳﻮﻟﻔﻮري ﺣﺎﺻﻞ ﻣﻴﺸﻮد و ﻧﻪ در ﺳﺮﺑﺎره ﺣﻞ ﻣﻴﺸﻮﻧﺪ و ﻧﻪ در ﻓﻠﺰ‬
‫ﻣﺬاب ﺑﻠﻜﻪ ﺑﺎ ﻫﺮدو ﺗﺒﺎدل ﮔﻮﮔﺮد دارﻧﺪ‬
‫‪59‬‬
‫ﮔﺪاز ‪Smelting‬‬
‫• ﺣﺮارت دﻫﻲ ﺟﻬﺖ ﺗﻮﻟﻴﺪ ﻓﻠﺰ ﻳﺎ ﻣﺎت ﻓﻠﺰ‪ .‬در ﺣﻴﻦ ذوب ﻣﻮاد ﻧﺎﺧﻮاﺳﺘﻪ )ﮔﺎﻧﮓ( ﺳﻨﮓ‬
‫ﻣﻌﺪن ﻛﻤﺘﺮ ذوب ﻣﻲ ﮔﺮدﻧﺪ ) ﻧﻘﻄﻪ ذوب ﺑﺎﻻ(‪ ،‬در ﻧﺘﻴﺠﻪ ﺑﺎ اﻓﺰودن ﻓﻼﻛﺲ ﻣﻨﺎﺳﺐ ﺑﻪ‬
‫آن ﺗﻮﻟﻴﺪ ﺳﺮﺑﺎره اﻧﺠﺎم ﻣﻲ ﺷﻮد ﻛﻪ ﻧﻘﻄﻪ ذوب ﻛﻤﺘﺮي داﺷﺘﻪ و ﮔﺎﻧﮓ وارد آن ﻣﻲ‬
‫ﺷﻮد‪.‬‬
‫ﻮ‬
‫• ﺳﺮﺑﺎره ﻧﺎﻣﻲ ﻋﻤﻮﻣﻲ ﺑﺮاي ﻣﺸﺨﺺ ﻛﺮدن ﺗﺮﻛﻴﺒﺎت ﻣﻌﻴﻨﻲ اﺳﺖ ﻛﻪ در ﻓﺮآﻳﻨﺪ ﮔﺪاز ﺑﻪ‬
‫دﺳﺖ ﻣﻲ آﻳﺪ و ﺷﺎﻣﻞ اﻛﺴﻴﺪﻫﺎ و ﻣﺨﻠﻮﻃﻲ از ﺳﻴﻠﻴﻜﺎﺗﻬﺎ‪ ،‬ﻓﺴﻔﺎﺗﻬﺎ و ﻳﺎ ﺑﻮرات ﻓﻠﺰات ﻣﻲ‬
‫ﺗﻮاﻧﺪ ﺑﺎﺷﺪ‪.‬‬
‫• در ﻓﺮآﻳﻨﺪ ذوب و اﺳﺘﺨﺮاج ﻓﻠﺰات ﻣﻲ ﺗﻮان راﺑﻄﻪ زﻳﺮ را ﻧﻮﺷﺖ‪:‬‬
‫ﺳﺮﺑﺎره‪+‬ﮔﺎز‬
‫ﻣﺎت‪ +‬ﺎ‬
‫ﻓﻼﻛﺲ‪<--‬ﻓﻠﻓﻠﺰ‪ /‬ﺎت‬
‫ﻛﻨﻨﺪه‪+‬ﻓﻼﻛ‬
‫ﻣﻮاد ااﺣﻴﺎﺎ ﻛﻨﻨ‬
‫ﻣﻌﺪﻧﻲ‪ +‬ﮔﺎﻧﮓ‪ +‬ا‬
‫ﻣﻮاد ﻧ‬
‫ا‬
‫• از اﻳﻦ ﻓﺮآﻳﻨﺪ ﻣﻌﻤﻮﻻ ﺑﺮاي ﺟﺪاﻳﺶ دو ﻣﺎﻳﻊ ﻏﻴﺮ ﻗﺎﺑﻞ ﺣﻞ درﻫﻢ)‬
‫ﺳﺮﺑﺎره‪/‬ﻓﻠﺰ ﻣﺬاب‪ ،‬ﺳﺮﺑﺎره‪/‬ﻣﺎت( اﺳﺘﻔﺎده ﻣﻲ ﺷﻮد‪.‬‬
‫‪60‬‬
‫جلسه ‪٢‬‬
‫‪٣٠‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫• از ﻣﺎﺗﻬﺎ ﺑﻪ دو ﻣﻨﻈﻮر اﺳﺘﻔﺎده ﻣﻲ ﺷﻮد‪ -1 :‬ﺟﻤﻊ آوري ﻣﻴﻨﺮاﻟﻬﺎي‬
‫ﺑﺎارزش در ﻓﺮآﻳﻨﺪﻫﺎي ﮔﺪاز ﻣﺎﻧﻨﺪ ‪ Cu‬و ‪ -2 Ni‬ﺟﻤﻊ آوري‬
‫ﻧﺎﺧﺎﻟﺼﻲ ﻫﺎ‬
‫اﻧﺠﺎمم ﻣﻲﻲ‬
‫ي ﺠ‬
‫اﻛﺴﻴﺪي‬
‫اوﻗﺎت ﻴ‬
‫ﺑﺮﺧﻲﻲ و‬
‫ﻳﻂ ﺧﻨﺜﻲﻲ و ﺑﺮ‬
‫ﺷﺮاﻳﻂ‬
‫وب ﻣﺎت درر ﺮ‬
‫ﻋﻤﻠﻴﺎت ذوب‬
‫ﻴ‬
‫•‬
‫ﭘﺬﻳﺮد‪ .‬در ﺻﻮرت ﺣﻀﻮر ﻋﻨﺎﺻﺮي ﭼﻮن ‪ As‬و ‪ Sb‬ﻓﺎز ﺳﻮﻣﻲ در‬
‫اﺛﺮ ذوب ﺣﺎﺻﻞ ﻣﻲ ﺷﻮد ﻛﻪ اﺷﭙﺎﻳﺲ ﻧﺎم دارد )‪ .(Speiss‬اﺷﭙﺎﻳﺲ‬
‫ﻣﺨﻠﻮﻃﻲ از آرﺳﻨﻴﻚ‪ ،‬آﻧﺘﻴﻤﻮان و ﻓﻠﺰات ﻣﺬاب ﻣﺎﻧﻨﺪ آﻫﻦ‪ ،‬ﻛﺒﺎﻟﺖ و‬
‫ﻧﻴﻜﻞ اﺳﺖ‪.‬‬
‫‪61‬‬
‫اﻧﻮاع ﻓﺮآﻳﻨﺪﻫﺎي ﮔﺪاز‬
‫* ﮔﺪاز اﺣﻴﺎﺋﻲ ‪Reduction smelting‬‬
‫* ﮔﺪاز ﻣﺎت ‪Matte smelting‬‬
‫*ﮔﮔﺪاز ﻫﺎﻟﻮژﻧﻪ ﻛﻨﻨﺪه‬
‫*ﮔﺪاز ﺟﺎﻧﺸﻴﻨﻲ‬
‫• ذوب اﺣﻴﺎﺋﻲ ﻣﻌﻤﻮﻻ درﻛﻮره ﺑﻠﻨﺪ و ذوب ﻣﺎت در ﻛﻮره اﻧﻌﻜﺎﺳﻲ‬
‫اﻧﺠﺎمم‬
‫‪ Flash Smelting‬ﺠ‬
‫ﻛﻮره آﺗﺸﻲﻲ ‪g‬‬
‫در ﻮر‬
‫‪ Reverberatoryy‬و ﻳﻳﺎ ر‬
‫ﻣﻲ ﺷﻮد‪ .‬ﻛﻮره اﻟﻜﺘﺮﻳﻜﻲ ﺗﻮاﻧﺎﻳﻲ اﻧﺠﺎم ﻫﺮ دو ﻓﺮآﻳﻨﺪ را دارا ﻣﻲ ﺑﺎﺷﺪ‪.‬‬
‫ﻛﻮره ﺑﻠﻨﺪ ﺗﻮﻟﻴﺪ آﻫﻦ و ﻛﻮره ﻗﺎﺋﻢ ﺑﺮاي ﺗﻮﻟﻴﺪ ﺳﺮب دو ﻣﺜﺎل از اﻳﻦ ﻧﻮع‬
‫ﻛﻮره ﻫﺎي ﻣﻮرد اﺳﺘﻔﺎده در ﮔﺪاز اﺣﻴﺎﺋﻲ ﻫﺴﺘﻨﺪ‪.‬‬
‫‪62‬‬
‫جلسه ‪٢‬‬
‫‪٣١‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫• ﮔﺪازاﺣﻴﺎﺋﻲ ﺑﺮ روي اﻛﺴﻴﺪﻫﺎي ﺣﺎﺻﻞ از ﺗﺸﻮﻳﻪ اﻧﺠﺎم ﻣﻲ ﺷﻮد‪.‬‬
‫• ﻋﻮاﻣﻞ اﺣﻴﺎﻛﻨﻨﺪه ﻛﺮﺑﻦ‪ H2 ،CO ،‬و ﻣﻮادي ﻣﺎﻧﻨﺪ ‪ Al ، Si‬و ‪ Mg‬ﻣﻲ‬
‫ﺑﺎﺷﻨﺪ)اﺣﻴﺎ ﺑﻮﺳﻴﻠﻪ اﻛﺴﻴﺪ ﻓﻠﺰ ﭘﺎﻳﺪارﺗﺮ از ﻓﻠﺰ ﻣﻮرد ﻧﻈﺮ (‪.‬‬
‫• در ﻛﻮره ﺑﻠﻨﺪ ذوب آﻫﻦ ﺳﻮﺧﺖ ﻣﻮرد اﺳﺘﻔﺎده ﻛﻚ ﺑﻮده و ﻣﻮاد از ﺑﺎﻻي‬
‫آﻏﺎز ﻣﻲ‬
‫واﻛﻨﺸﻬﺎ آﻏﺎ‬
‫ﺑﺎﻻي ﺑﻮﺗﻪ اﻛ ﺸ ﺎ‬
‫ﻫﻮاي دﻣﻴﺪه ﺷﺷﺪه در ﺎﻻ‬
‫اﺳﺘﻔﺎده ااز ا‬
‫ﺷﺎرژژ و ﺎﺑﺎ ا ﻔﺎ‬
‫ﻛﻛﻮره ﺷﺎ‬
‫ﺷﻮد‪.‬‬
‫• ﺳﻨﮓ ﻣﻌﺪن ﺳﺮب در ﻛﻮره ﻗﺎﺋﻢ ﺗﺸﻮﻳﻪ ﺷﺪه و ‪ PbO‬ﺣﺎﺻﻞ را ﺑﺎ ﻛﻚ در‬
‫ﻛﻮره ﺷﺎرژ ﻣﻲ ﺷﻮد‪ .‬ﻣﻌﻤﻮﻻ ﻛﻚ ﻣﻮرد اﺳﺘﻔﺎده در اﻳﻦ ﻛﻮره ﻫﺎ ﻛﻴﻔﻴﺖ ﭘﺎﺋﻴﻦ‬
‫ﺮ اﺳﺖ‪ .‬ﻋﻤﻞﻞ‬
‫ﻧﻴﺎز ﻛﻤﺘﺮ‬
‫ﻣﻮرد ﻴ ز‬
‫دﻣﺎي ﻮر‬
‫دارد ﭼﻮن ي‬
‫آﻫﻦ ر‬
‫ذوب ﻦ‬
‫ﻛﻮره ﺑﺑﻠﻨﺪ وب‬
‫از ﻮر‬
‫ﺗﺮي ز‬
‫ﺮي‬
‫اﺣﻴﺎء ﺗﻮﺳﻂ ‪ CO‬و در ﺑﺨﺸﻲ از ﻛﻮره)ﻣﻨﻄﻘﻪ ﻣﻴﺎﻧﻲ( ﺗﻮﺳﻂ ﺧﻮد ﻛﺮﺑﻦ‬
‫اﻧﺠﺎم ﻣﻲ ﺷﻮد‪ .‬در ﺑﺨﺶ ﭘﺎﺋﻴﻨﻲ ﻛﻮره ﻛﻪ دﻣﺎ د رﺣﺪود ‪ 700‬درﺟﻪ اﺳﺖ‬
‫ﺳﻮﻟﻔﻴﺪ ﺳﺮب ﺗﻮﺳﻂ آﻫﻦ اﺣﻴﺎء ﺷﺪه و ﺗﻮﻟﻴﺪ ﻣﺎت ﻣﻲ ﻛﻨﺪ‪.‬‬
‫‪63‬‬
‫ﮔﺪاز ﻣﺎت‪ :‬ﮔﺪاز ﻣﺎت در ﺧﺼﻮص ﻣﺲ و ﻧﻴﻜﻞ ﻣﻬﻢ اﺳﺖ‪ .‬اﺳﺎس ﮔﺪاز ﻣﺎت ﺑﺮ ﭘﺎﻳﻪ‬
‫ﺗﺸﻜﻴﻞ ﻓﺎزﻫﺎي ﻣﺬاب ﻗﺎﺑﻞ ﺗﻔﻜﻴﻚ از ﻫﻢ اﺳﺘﻮار اﺳﺖ‪ .‬در ﻣﻮرد ﻣﺲ ﻣﺎت‬
‫ﺣﺎﺻﻠﻪ داراي ‪ 30‬ﺗﺎ ‪ 70‬درﺻﺪ ﻣﺲ ﺑﻮده ﻛﻪ ﻣﺨﻠﻮﻃﻲ از ‪ FeS‬و ‪Cu2S‬‬
‫اﺳﺖ‪ .‬ﺑﺎ ﺗﺸﻜﻴﻞ ﻣﺎت ﻣﺲ در ﺣﻘﻴﻘﺖ ﻋﻤﻞ ﭘﺮﻋﻴﺎر ﻛﺮدن ﺳﻨﮓ ﻣﻌﺪن اﻧﺠﺎم‬
‫ﻣﻴﮕﻴﺮد‪.‬‬
‫ﻣﻴﮕﻴﺮد‪.‬‬
‫ﻓﺎز دوم در ﻓﺮآﻳﻨﺪ اﺳﺘﺨﺮاج ﻣﺲ‪ ،‬ﺳﺮﺑﺎره) ﺣﺎوي ﺳﻴﻠﻴﻜﺎت آﻫﻦ و ﻛﻠﺴﻴﻢ(‬
‫اﺳﺖ ﻛﻪ روي ﻣﺎت ﻗﺮار ﻣﻲ ﮔﻴﺮد‪ .‬دﺳﺘﻴﺎﺑﻲ ﺑﻪ ﻣﺎت ﻣﺲ ﻣﻨﺎﺳﺐ ﻣﺴﺘﻠﺰم‬
‫ﺑﺮرﺳﻲ دﻳﺎﮔﺮاﻣﻬﺎي ﺗﻌﺎدﻟﻲ ‪ Cu-S,Fe-S,Cu2S-FeS‬و دﻳﺎﮔﺮام ﺳﻪ‬
‫ﺗﺎﻳﻲ ‪ Cu-Fe-S‬ﻣﻲ ﺑﺎﺷﺪ ﻛﻪ ﺑﺎ اﻳﻦ ﺑﺮرﺳﻲ ﻣﻲ ﺗﻮاﻧﻴﻢ درﻳﺎﺑﻴﻢ ﭼﻪ ﻓﺎزﻫﺎﻳﻲ‬
‫در ﺟﻪ دﻣﺎﻳﻲ ﭘﺎﻳﺪار ﻫﺴﺘﻨﺪ ﺗﺎ ﺑﻬﺘﺮﻳﻦ ﻓﺎز را در ﺑﻬﺘﺮﻳﻦ ﻧﻘﻄﻪ ذوب داﺷﺘﻪ‬
‫ﺑﺎﺷﻴﻢ‪.‬‬
‫ﺗﻬﻴﻪ ﻣﺎت ﻣﺲ در ﻛﻮره ﻫﺎي ﺷﻌﻠﻪ اي اﻧﺠﺎم ﻣﻲ ﮔﻴﺮد و ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﮔﺮد و ﻏﺒﺎر‬
‫ﺣﺎﺻﻠﻪ اﺳﺘﻔﺎده از ﻏﺒﺎرﮔﻴﺮ اﻟﺰاﻣﻴﺴﺖ‪.‬‬
‫‪64‬‬
‫جلسه ‪٢‬‬
‫‪٣٢‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫ﮔﺪاز ﺟﺎﻧﺸﻴﻨﻲ‪:‬‬
‫اﻳﻦ ﻧﻮع ﮔﺪاز از ﻗﺪﻳﻤﻴﺘﺮﻳﻦ روﺷﻬﺎي اﺳﺘﺨﺮاج ﻓﻠﺰ اﺳﺖ ﻛﻪ در آن ﻋﻨﺼﺮي ﺟﺎﻧﺸﻴﻦ ﻋﻨﺼﺮ دﻳﮕﺮ‬
‫در ﺗﺮﻛﻴﺐ ﺳﻨﮓ ﻣﻌﺪن ﻣﻲ ﺷﻮد‪ .‬در اﻳﻦ ﻓﺮآﻳﻨﺪ ﻓﻠﺰاﺗﻲ ﻣﺎﻧﻨﺪ ‪ Al, Mg‬و ‪ Si‬ﺟﺎﻧﺸﻴﻦ ﻓﻠﺰ ﻣﺎ در‬
‫ﺗﺮﻛﻴﺐ ﻣﻲ ﺷﻮﻧﺪ‪ .‬ﺑﻪ اﻳﻦ روﺷﻬﺎ ﻣﺘﺎﻟﻮﺗﺮﻣﻲ ﻫﻢ ﻣﻲ ﮔﻮﻳﻨﺪ‪ .‬اﺳﺘﻔﺎده از ‪ Al , Mg‬ﻧﻴﺎزي ﺑﻪ ﺣﺮارت‬
‫دادن ﻧﻴﺴﺖ و ﺧﻮدﺷﺎن ﺣﺮارت ﻛﺎﻓﻲ ﺗﻮﻟﻴﺪ ﻣﻲ ﻛﻨﻨﺪ وﻟﻲ ‪ Si‬ﻧﻴﺎز ﺑﻪ ﺣﺮارت داﺷﺘﻪ و در ﻛﻮره ﻫﺎي‬
‫ﭘﺬﻳﺮد‪.‬‬
‫اﻧﺠﺎمم ﻣﻲﻲ ﭘ ﻳﺮ‬
‫ﺟﺎﻧﺸﻴﻨﻲﻲ ﺠ‬
‫اﻟﻜﺘﺮﻳﻚ ﻋﻤﻞﻞ ﮔﺪازز ﺟ ﻴ‬
‫ﻮس ﺮﻳ‬
‫ﻗﻮس‬
‫ﮔﺪاز ﻫﺎﻟﻮژﻧﻪ‪:‬‬
‫ﺗﺮﻛﻴﺐ ﺑﺎ ﻳﻜﻲ از ﻫﺎﻟﻮژﻧﻬﺎ ﻣﺎﻧﻨﺪ ‪ Cl2‬و اﺳﺘﺨﺮاج ﻓﻠﺰ ﻣﻮرد ﻧﻈﺮ از ﻫﺎﻟﻮژن ﺣﺎﺻﻠﻪ) ﺑﻮﺳﻴﻠﻪ ﻛﺮﺑﻦ‬
‫و ﻳﺎ ﺋﻴﺪروژن(‪ .‬ﺑﺎ اﻳﻦ روش اﻣﻜﺎن اﺳﺘﺨﺮاج ﻓﻠﺰات دﻳﺮﮔﺪاز و ﻫﻤﭽﻨﻴﻦ ﻓﻠﺰاﺗﻲ ﭼﻮن ‪Ti. Mg,‬‬
‫‪ Al‬وﺟﻮد دارد‪.‬‬
‫ﻛﺮدن‪:‬‬
‫ﻋﻠﺖ ﻫﺎﻟﻮژﻧﻪ ﻛ دن‬
‫‪-1‬ﻓﺸﺎر ﺑﺨﺎر ﺑﺎﻻي ﻫﺎﻟﻮژﻧﻬﺎ اﻣﻜﺎن ﺧﺎﻟﺺ ﺳﺎزي ﺑﺎ ﺗﻘﻄﻴﺮ را ﻓﺮاﻫﻢ ﻣﻲ ﻛﻨﺪ‪.‬‬
‫‪ -2‬ﻫﺎﻟﻮژﻧﻬﺎ اﻧﺤﻼل ﻛﻤﻲ در ﻓﻠﺰات دارﻧﺪ و ﻣﻲ ﺗﻮان ﻓﻠﺰ ﺑﺎ ﺧﻠﻮص ﺑﺎﻻ ﺑﻪ دﺳﺖ آورد‪.‬‬
‫‪ -3‬ﺣﻼﻟﻴﺖ آﻧﻬﺎ در ﻣﺤﻠﻮﻟﻬﺎي آﺑﻲ اﻣﻜﺎن ﺧﺎﻟﺺ ﺳﺎزي ﺑﺎ ﻛﺮﻳﺴﺘﺎﻟﻴﺰاﺳﻴﻮن را ﻣﻲ دﻫﺪ‪.‬‬
‫‪ -4‬ﻧﻘﻄﻪ ذوب ﻛﻤﻲ دارﻧﺪ و ﻣﻲ ﺗﻮان اﺣﻴﺎي اﻟﻜﺘﺮوﻟﻴﺘﻲ را ﺑﻜﺎر ﺑﺮد‪.‬‬
‫‪65‬‬
‫‪Reduction smelting: reduction of Metal oxide concentrates under highly‬‬
‫‪reducing conditions with carbon or some other suitable reducing agent‬‬
‫‪liquid slag-liquid metal separation.‬‬
‫‪Matte smelting: smelting metal sulphide concentrates under neutral or‬‬
‫‪slightly reducing conditions‬‬
‫‪li id slag-liquid‬‬
‫‪liquid‬‬
‫‪l‬‬
‫‪li id matte‬‬
‫‪tt separation.‬‬
‫‪ti‬‬
‫‪liquid –liquid separation process‬‬
‫‪Slags: 1-collecting unwanted materials 2-formation of layer over the metal‬‬
‫‪melt‬‬
‫‪Slag characteristics:‬‬
‫‪™Enough difference between slag and metal density‬‬
‫‪™Good fluidity to separate easily‬‬
‫‪™Proper composition to lower gangue and inclusion activity and to‬‬
‫‪give the optimum balance of basicity and fluidity is extremely important so‬‬
‫‪that maximum removal of impurities takes place‬‬
‫‪66‬‬
‫جلسه ‪٢‬‬
‫‪٣٣‬‬
٠٧/٢٩/١۴٣۵
How to make slag
Adding Fluxes:
¾Decrease melting point and Increase
fl idit off slag
fluidity
l
¾Basic flux for Si gangues
CaO
¾Using flux as a coating layer over the
melt
potassium and sodium carbonates
¾For precious metal oxidant flux(Na2O2 ،
NaNO3 ،KNO3) and reducing flux(NaCN)
67
Smelting furnaces
‫ در اﻳﻦ ﻧﻮع ﻛﻮره ﻫﺎ ﺷﻌﻠﻪ‬.‫ﻛﻮره ﻫﺎي ﺷﻌﻠﻪ اي در اﻧﺪازه ﻫﺎ ي ﻣﺨﺘﻠﻒ وﺟﻮد دارﻧﺪ‬
‫آﺟﺮﻫﺎ‬melting
‫ﺳﺒﺐ ﮔﺮم ﺷﺪن‬
‫ﻣﻲ ﻛﻨﺪ و‬
‫وارد ﺷﺪه و ﺑﺎ‬than
‫ﻫﺎي ﻛﻮره‬
‫از ﻛﻨﺎره‬
lower
points
of‫ﺑﺮﺧﻮرد‬
Metal‫ﺳﻘﻒ‬
sulphides
metal
‫ﺟﻤﻊ آوري ﺷﺪه در‬matte
‫ﮔﺮد وﻏﺒﺎر‬smelting
‫از ﺷﺎرژ رﻳﺰ و‬
‫ﻛﻮره ﻫﺎ ﻣﻲ‬
‫ در اﻳﻦ‬.‫ﻣﻲ ﺷﻮد‬
oxides
at‫ﺗﻮان‬
lower
temperatures
‫اﻳﻦ ﻧﻮع ﻛﻮره ﻫﺎ ﺷﺎرژ‬
‫ﻫﻢ ﻣﻲ ﺗﻮان در‬neutral
‫ﻛﻢ ﻋﻴﺎر را‬or
‫ﻣﻮاد‬only
‫ﻛﺮد و‬a‫اﺳﺘﻔﺎده‬
‫ﻓﻴﻠﺘﺮﻫﺎ‬
Reverberatory
furnaces:
slightly
.‫ﻛﻛﺮد‬
reducing condition.
‫کوره انعکاسی‬
1-reflected or reverberated of combustion products of the fuel from inclined
furnace roof
2- The long, wide hearth allows good slag-matte separation, but the process
tends to be slow.
٣۴
68
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Electric arc furnaces:
for higher temperatures (>1500°C)
Main application :production of ferro-alloys, Ni3S2 smelting, and
in ironmaking areas where electricity is cheap and production
requirements are too low for the use of a blast furnace process.
‫کوره قوس الکتريک‬
69
modern flash smelting
1-Higher production rate (incorporating the principles of flash roasting with
melting.)
2-Injection of finely ground ore(high areas of contact between the roasting
gas, flux and concentrate) + oxygen/preheated air +flux.
3- settlement of oxidized product and formation of a liquid slag-liquid matte
separation.
4- it is an autogenous process
70
٣۵
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
blast furnace
For lumpy form and/or when a high reduction potential is required
Charge: metal oxide smelting with coke and flux
MO + CO Æ M + CO2
Circular blast furnace for
high melting point oxides
The CO/CO2 ratio is used as a major control
parameter in blast furnace smelting of metal
oxides.
71
Rectangular blast furnace for lower boiling point metals such as Pb and
Zn
Lower temperature decrease the danger of metal loss through volatilization of
the low boiling point metals
for matte smelting of metal sulphides only sufficient coke is charged to
provide the necessary
p
y furnace atmosphere
p
and heat since a reduction
reaction is not required.
The success of the matte
smelting operation is
judged by the:
fall and grade of matte
72
٣۶
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Copper:
¾present in the earth’s crust as copper-ironsulfide and copper sulfide minerals, e.g.
chalcopyrite (CuFeS2), bornite (Cu5FeS4) and
chalcocite
h l
i (Cu
(C 2S).
S)
¾Typical copper ores contain from
0.5% Cu (open pit mines) to 1 or 2%
Cu (underground mines).
¾Pure copper metal is produced from
these ores by pyrometallurgical
methods(concentration, smelting and
refining)
73
¾Copper also occurs in oxidized
minerals (carbonates, oxides, hydroxysilicates, sulfates), but to a lesser extent.
Copper metal is usually produced from
these minerals by hydrometallurgical
methods, Hydrometallurgy is also used
to produce copper metal from
chalcocite,, Cu2S.
¾Scrap copper and copper alloys is 10
or 15% of mine production.
74
٣٧
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫تبديل‬
‫گداز‬
‫تصفيه‬
‫‪75‬‬
‫‪76‬‬
‫جلسه ‪٢‬‬
‫‪٣٨‬‬
٠٧/٢٩/١۴٣۵
‫مينرال ھای اصلی مس‬
pyrometa
allurgy
Hydro
ometallurgy
77
Extracting Copper from Copper-Iron-Sulfide
Ores
¾ About 80% of the world’s copper-from-ore originates
in Cu-Fe-S ores(about 1% Cu).
¾ Cu-Fe-S
Cu Fe S minerals are not easily dissolved by
aqueous solutions, so the vast majority of copper
extraction from these minerals is pyrometallurgical.
The extraction entails:
• Concentration by froth flotation (isolating an ore's Cu-Fe-S
(and Cu-S) mineral particles)- 20-30%Cu
• Roasting of sulfides
• Smelting the concentrate to molten high-Cu matte(50-70%)
• Converting the molten matte to impure molten copper (99%)
• Fire- and electrorefining impure copper to ultra-pure copper.
78
٣٩
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪Roasting of sulfides‬‬
‫توليد فلزات از سولفيد آنھا‪:‬‬
‫با توجه به انرژي آزاد تشكيل سولفيدھايي چون ‪ H2S ,CS2‬و ‪ ،COS‬اين سولفيدھا‬
‫ناپايدار بوده و در نتيجه نمي توان از كربن‪ ،‬ئيدروژن و يا مونو اكسيد كربن به‬
‫عنوان عامل احيائي براي احيايي تركيبات سولفيدي استفاده كرد‪ .‬پس راه حل حذف‬
‫ت؟‬
‫چيست؟‬
‫سولفيدي‬
‫سنگھاي لف د‬
‫گوگرد از نگھا‬
‫گ گ د‬
‫‪Roasting: decrease sulfur content to an optimum level‬‬
‫‪79‬‬
‫‪Cu2S+O2ÆCu2O+SO2‬‬
‫‪FeS+3/2O2ÆFeO+SO2‬‬
‫‪3FeS2+8O2ÆFe3O4+6SO2‬‬
‫‪O2 affinity for Fe higher than for Cu‬‬
‫‪Possible reactions‬‬
‫‪during roasting :‬‬
‫‪Cu2S more stable than FeS‬‬
‫‪Control of PO2 to oxidize only Fe‬‬
‫‪Cu remains as sulfide‬‬
‫‪80‬‬
‫جلسه ‪٢‬‬
‫‪۴٠‬‬
٠٧/٢٩/١۴٣۵
Smelting of Copper Ores
Concentrates :
• Sulfide minerals
• Gangue oxides (AI2O3, CaO, MgO, SiO2)
• Metallic impurities (Lead, Zinc)
• Precious metals( Au, Ag, Cd, Ni, Mo)
Theoretically, this material could be directly reacted to produce
metallic Cu by oxidizing the sulfides to elemental copper and
ferrous oxide:
E th
Exothermic
i
molten copper
Smelting products should be:
Molten slag(flux oxides, gangue oxides and FeO)
81
Smelting of copper ores
Under oxidizing conditions:
Slag (0.2 – 1%Cu)
More Fe in concentrate
More slag
More Cu lost
Decreasing Fe in roasting step is one solution
The most important equilibrium
Adding Silica
Fayalite ( Ferrous silicate)
Slag
Molten FeS reduce
more oxides
۴١
82
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪adding SiO2 to an oxy-sulfide‬‬
‫‪liquid causes it to split into matte‬‬
‫‪and slag.‬‬
‫‪what happens when a mixture of‬‬
‫‪FeO, FeS, and SiO2 is heated to‬‬
‫?‪1200 C‬‬
‫‪Lines a, b, c and d represent the‬‬
‫‪equilibrium‬‬
‫‪q‬‬
‫‪compositions‬‬
‫‪p‬‬
‫‪of the‬‬
‫‪two liquids.‬‬
‫‪83‬‬
‫•‬
‫در حدود ‪ ٢٠‬عنصر ديگر بايستی با فرآيندھای بعدی از مات مس جداسازی شوند‪ .‬فلزات‬
‫باارزشی چون طال‪ ،‬نقره‪ ،‬پالتينيوم و پاالديوم عمدتا در مات مس جمع شده در‬
‫حاليکه کلسيم‪ ،‬منيزيم و آلومينيوم به سرباره سيليکاتی مھاجرت می کنند‪.‬‬
‫معدن مس سرچشمه‪:‬عيار ‪ %٠/٧٨‬مس‪ %٠/٠٣ ،‬موليبدن ‪ppm ٠/٢٧‬طال‪،‬‬
‫‪ppm ١/١۴‬نقره‪ppm ١/٢ ،‬نيكل و ‪ppm ٠/٩‬كبالت است‪.‬‬
‫‪84‬‬
‫‪٨٤‬‬
‫جلسه ‪٢‬‬
‫‪۴٢‬‬
٠٧/٢٩/١۴٣۵
Slag:These oxides include FeO from Fe oxidation, SiO2
from flux, and oxide impurities from concentrate.
solution of molten oxides like FeO, Fe2O3,SiO2, AI2O3,CaO, MgO
Decrease sulfide solubility
Slags from Cu matte smelting:
30-40% Fe in the form of oxides
30-40% SiO2
(Cu in matte/Cu in slag) should be between 50-100 wt%
High matte grade is not favourable why?
‰ high copper losses in slag
‰Copper in slags trapped in 3 forms: suspended matte,
dissolved copper (II)sulfide, slagged copper(I) oxide
Slags containing <0.8% Cu Æ discarded
٨٥
Matte
Matte vs. slag:
1- higher density (3.9 for pure FeS to 5.2 for pure Cu2S)
2-lower melting points (1200°C of most slags)
3-lower viscosity ( 0.003 kg/m.s vs. 0.2-1 kg/m.s for typical
86
slags)
۴٣
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Reactions During Matte Smelting
Purpose of matte smelting: turn the sulfide minerals in solid
copper concentrate into three products: molten matte,
molten slag and offgas.
1- large amount of O2 will oxidize more of the Fe in the concentrate.
higher matte grade
Copper loss in slag
2 FeO content of the slagÆ high activity of FeO
2-FeO
Solution
Lowering FeO activity
by adding SiO2
87
88
۴۴
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
SMELTING PRODUCTS: MATTE, SLAG
AND OFFGAS
Matte smelting is the most common way of smelting CuFe-S concentrates. It entails heating, oxidizing (almost
always with oxygen-enriched air) and fluxing the
concentrate at high temperatures, 1250°C. The products
are:
• (a) molten Cu-Fe-S matte, 45-75% Cu, which is sent
to oxidation converting to molten metallic copper
• (b) molten Fe silicate slag, which is treated to
recover Cu and then sold
• ((c)) SO2 bearing
g offgas,
g , which is cooled,, cleaned and
sent to sulfuric acidmaking.
89
‫ﻛﻮره ﻫﺎي ﻣﻮرد اﺳﺘﻔﺎده در ﻋﻤﻠﻴﺎت ﮔﺪازﻣﺲ‬
:‫اﻧﻮاع ﻛﻮره ﻫﺎي ﻣﻮرد اﺳﺘﻔﺎده ﻋﺒﺎرﺗﻨﺪ از‬
‫ ﻳﻜﻲ از ﻗﺪﻳﻤﻲ ﺗﺮﻳﻦ ﻛﻮره ﻫﺎي ﻣﻮرد اﺳﺘﻔﺎده در‬:(Reverbratory )‫ ﻛﻮره ﺷﻌﻠﻪ اي‬-1
‫ﺗﻮﻟﻴﺪ ﻣﺎت ﻣﺲ اﺳﺖ ﻛﻪ اﻣﺮوزه اﺳﺘﻔﺎده از اﻳﻦ ﻛﻮره ﻫﺎ رو ﺑﻪ ﻛﺎﻫﺶ اﺳﺖ و ﻛﻮره ﻫﺎي ﺷﻌﻠﻪ‬
‫اي ﻣﻮرد اﺳﺘﻔﺎده در ﻣﺲ ﺳﺮﭼﺸﻤﻪ ﻛﺮﻣﺎن از آﺧﺮﻳﻦ ﻛﻮره ﻫﺎي ﺗﻮﻟﻴﺪ ﻣﺎت از اﻳﻦ ﻧﻮع ﻣﻲ‬
‫ﻳﻜﻲ از‬
‫ﺷﻴﻠﻲ ﻜ‬
‫ ﺷ ﻠ‬.‫ﻗﻒ ﺷﺷﺪ‬
‫ ﻣﺘﻮﻗﻒ‬1995 ‫ﺳﺎل‬
‫ﺷﻌﻠﻪ ااي در ﺎل‬
‫اﺧﺮﻳﻦ ﻛﻛﻮره ﺷ ﻠ‬
‫اﻳﺎﻻت ﻣﺘﺤﺪه اﺧ‬
‫ در ا ﺎﻻت‬.‫ﺑﺎﺷﺪ‬
‫ﺎﺷ‬
.‫ﺑﺰرﮔﺘﺮﻳﻦ ﺗﻮﻟﻴﺪ ﻛﻨﻨﺪه ﻫﺎي ﻣﺲ در دﻧﻴﺎ ﻫﻨﻮز از اﻳﻦ ﻛﻮره ﻫﺎ اﺳﺘﻔﺎده ﻣﻲ ﻛﻨﺪ‬
٩٠
۴۵
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫• اﺑﻌﺎد اﻳﻦ ﻛﻮره ﻫﺎ ﻣﺘﻔﺎوت اﺳﺖ‪ .‬ﻃﻮل ‪ 33‬ﻣﺘﺮ ‪،‬ﻋﺮض ‪ 10‬ﻣﺘﺮ و ارﺗﻔﺎع ‪ 4‬ﻣﺘﺮ‬
‫• ﺗﻮاﻧﺎﻳﻲ ﺗﻮﻟﻴﺪ ‪ 500‬ﺗﺎ ‪ 1000‬ﺗﻦ ﻣﺎت ‪ 450 /‬ﺗﺎ ‪ 800‬ﺗﻦ ﺳﺮﺑﺎره در روز‬
‫• ﻣﻨﺒﻊ ﺗﺎﻣﻴﻦ ﺣﺮارت ﺑﺮاي ﻧﮕﻬﺪاري دﻣﺎ در ﻣﺤﺪوده ‪ 1150‬ﺗﺎ ‪ 1300‬درﺟﻪ ﺳﺎﻧﺘﻴﮕﺮاد از اﺣﺘﺮاق‬
‫ﮔﺎزوﺋﻴﻞ‪ ،‬ﻣﺎزوت‪ ،‬ﮔﺎز ﻃﺒﻴﻌﻲ و ﻳﺎ ﭘﻮدر زﻏﺎل ﻧﺮﻣﻪ ﺗﺎﻣﻴﻦ ﻣﻲ ﺷﻮد‪.‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫ﺳﻘﻒ ﻛﻮره ﺑﺑﺮﺧﻮرد‬
‫ﺧﻮرد‬
‫دﻳﺮﮔﺪازﻫﺎي ﻘﻒ‬
‫ﺣﺪود ‪ 4‬ﺗﺎ ‪ 6‬ﻣﺸﻌﻞ وﻇﻴﻔﻪ اﻧﺘﻘﺎل و اﻳﺠﺎد ﺷﻌﻠﻪ را ﺑﺑﺮ ﻋﻬﺪه دارﻧﺪ‪ .‬ﺷﻌﻠﻪ ﺑﻪ دﻳ ﮔﺪازﻫﺎ‬
‫ﻛﺮده و از ﻃﺮﻳﻖ ﺗﺸﻌﺸﻊ از ﺳﻘﻒ ﻛﻮره ﺑﻪ ﻛﻨﺴﺎﻧﺘﺮه ﻣﻨﺘﻘﻞ ﻣﻲ ﺷﻮد‪ .‬دﻣﺎي ﺳﻘﻒ ﻧﺒﺎﻳﺴﺘﻲ از ‪ 1500‬درﺟﻪ ﻓﺮاﺗﺮ‬
‫رود ﭼﻮن ﺳﺒﺐ ﺗﺨﺮﻳﺐ ﻧﺴﻮزﻫﺎ ﻣﻲ ﺷﻮد‪.‬‬
‫ﻋﻤﻠﻴﺎت ذوب ﭘﻴﻮﺳﺘﻪ ﺑﻮده و ﻣﺬاب ﻣﺎت و ﺳﺮﺑﺎره از ﻣﺠﺮاﻫﺎي ﻣﺠﺰا از درون ﻛﻮره ﺗﺨﻠﻴﻪ ﻣﻲ ﺷﻮﻧﺪ‪ .‬ﻧﻮع‬
‫ﺷﺎرژ ﻣﻮرد اﺳﺘﻔﺎده ﮔﺴﺘﺮه اي از ﻣﻮاد ﺑﻪ ﺻﻮرت رﻳﺰ‪ ،‬ﻛﻠﻮﺧﻪ اي و ﺗﺮ و ﺧﺸﻚ را در ﺑﺮﻣﻲ ﮔﻴﺮد‪.‬‬
‫دو ﻣﺮﺣﻠﻪ ﺑﺮاي ذوب دراﻳﻦ ﻛﻮره ﻫﺎ در ﻧﻈﺮ ﮔﺮﻓﺘﻪ ﻣﻲ ﺷﻮد‪:‬‬
‫ﺳﺮﺑﺎره‬
‫ﻫﺎي ﻣﺎت و ﺮﺑ ر‬
‫ﻻﻳﻪ ي‬
‫ﺗﺸﻜﻴﻞ ﻻﻳ‬
‫ﺷﺎرژ و ﻴﻞ‬
‫ذوب رژ‬
‫اﻟﻒ‪ -‬وب‬
‫ب‪ -‬ﺗﻪ ﻧﺸﻴﻨﻲ ﻣﺎت در زﻳﺮ ﻻﻳﻪ ﺳﺮﺑﺎره‬
‫اﺗﻤﺴﻔﺮ ﻛﺮوه ﺷﻌﻠﻪ اي ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻧﻮع ﺳﻮﺧﺖ اﺳﺘﻔﺎده ﺷﺪه از ﺧﻨﺜﻲ ﺗﺎ اﻛﺴﻴﺪان ﻣﺘﻐﻴﺮ اﺳﺖ‪.‬‬
‫ﻣﺎت ﺣﺎﺻﻞ از اﻳﻦ ﻧﻮع ﻛﻮره ﻫﺎ داراي ‪ 40‬ﺗﺎ ‪ % 50‬ﻣﺲ ﺑﻮده ﻛﻪ ﻣﺎت ﺑﺎ ﻋﻴﺎر ﭘﺎﺋﻴﻦ ﻣﺤﺴﻮب ﻣﻲ ﺷﻮد‪ .‬ﺑﻪ ﻋﻠﺖ‬
‫ﻋﺪم ﻣﺨﻠﻮط ﺷﺪن ﻣﻨﺎﺳﺐ ﻛﻨﺴﺎﻧﺘﺮه ﺑﺎ ﻫﻮا و ﮔﺎز ﺣﺎﺻﻞ از اﺣﺘﺮاق ‪ ،‬واﻛﻨﺸﻬﺎ ﺳﺮﻋﺖ ﻛﻤﺘﺮي ﻧﺴﺒﺖ ﺑﻪ دﻳﮕﺮ‬
‫روﺷﻬﺎ دارﻧﺪ‪.‬‬
‫‪٩١‬‬
‫• ﻋﻤﺪه واﻛﻨﺸﻬﺎي اﻧﺠﺎم ﭘﺬﻳﺮﻓﺘﻪ در ﻛﻮره ﺷﻌﻠﻪ اي ﺑﻪ ﺻﻮرت زﻳﺮ اﺳﺖ ‪:‬‬
‫‪Cu2S+2Cu2O=6Cu+SO2‬‬
‫‪Cu2S+6CuO=4Cu2O+SO2‬‬
‫‪Cu2S+2CuSO4=2Cu2O+3SO2‬‬
‫‪Cu2S+4CuSO4=6CuO+5SO2‬‬
‫واﻛﻨﺶ زﻳﺮ ﺑﻪ ﺳﻮﻟﻔﻴﺪ ﻣﺲ‬
‫‪ FeS‬ﻃﺒﻖ ﻛ‬
‫واﻛﻨﺶ اول ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺷﺮاﻳﻂ ﻛﻛﻮره و ﺣﻀﻮر ‪F S‬‬
‫• ﻣﺲ ﺣﺎﺻﻞ از ﻛ‬
‫ﺗﺒﺪﻳﻞ ﻣﻲ ﺷﻮد‪:‬‬
‫• آﻫﻦ ﺣﺎﺻﻞ از اﻳﻦ واﻛﻨﺶ ﺑﻪ ‪ FeO‬ﺗﺒﺪﻳﻞ ﻣﻲ ﺷﻮد‪:‬‬
‫• ‪2Cu+FeS=Cu2S+Fe‬‬
‫• ‪Fe2O3+Fe=3FeO‬‬
‫ﺗﺮﻛﻴﺐ ﺑﺎ ‪ SiO2‬ﺣﺎﺻﻞ از‬
‫• ‪ FeS‬ﺑﺎﻗﻴﻤﺎﻧﺪه ﺳﺒﺐ اﺣﻴﺎي ‪ Fe2O3‬و ‪ Fe3O4‬ﺑﻪ ‪ FeO‬ﺷﺪه ﻛﻪ اﻳﻦ ﺗ ﻛﻴﺐ‬
‫ﻣﻮاد ﮔﺪازآور ﺗﺸﻜﻴﻞ ﺳﺮﺑﺎره ﻓﺎﻳﺎﻟﻴﺘﻲ را ﻣﻲ دﻫﺪ‪ FeS .‬و ‪ Cu2S‬در ﻛﻮره در ﻳﻜﺪﻳﮕﺮ ﻛﺎﻣﻼ‬
‫ﻣﺤﻠﻮل ﺑﻮده و ﻓﺎز ﻣﺎت را ﺗﺸﻜﻴﻞ ﻣﻲ دﻫﻨﺪ‪.‬‬
‫• ﺳﻮاﻟﻲ ﻛﻪ ﭘﻴﺶ ﻣﻲ آﻳﺪ اﻳﻦ اﺳﺖ ﻛﻪ ﺗﻜﻠﻴﻒ اﻛﺴﻴﺪﻫﺎي ﻣﺲ ﺣﺎﺻﻠﻪ ﭼﻴﺴﺖ؟ زﻳﺮا ﻫﺪف از ﺗﻮﻟﻴﺪ ﻣﺎت ﻣﺲ‬
‫رﺳﻴﺪن ﺑﻪ ﺗﺮﻛﻴﺐ ﺳﻮﻟﻔﻴﺪي از ﻣﺲ اﺳﺖ و اﻛﺴﻴﺪ ﺷﺪن ﻣﺲ ﻣﻄﻠﻮب ﻧﻴﺴﺖ ‪.‬‬
‫‪٩٢‬‬
‫ﺟﻮاب اﻳﻦ ﺳﻮال را ﺑﺎ ﺑﺮرﺳﻲ ﺗﻌﺪادي واﻛﻨﺶ ﺧﻮاﻫﻴﻢ داد‪:‬‬
‫•‬
‫جلسه ‪٢‬‬
‫‪۴۶‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫• اﺧﺘﻼف ﻣﻴﻞ ﺗﺮﻛﻴﺒﻲ آﻫﻦ و ﻣﺲ ﺑﺎ ﮔﻮﮔﺮد و اﻛﺴﻴﮋن ﻣﺒﻨﺎي ﺗﺸﻜﻴﻞ ﻣﺎت ﻣﺲ ﻣﻲ ﺑﺎﺷﺪ‪.‬‬
‫‪Fe+1/2S2=FeS‬‬
‫• ‪∆G°=-15873 cal/mol‬‬
‫• ‪∆G°=-19578 cal/mol‬‬
‫‪2Cu+1/2S2=Cu2S‬‬
‫‪∆G°=-39126 cal/mol‬‬
‫‪Fe+1/2O2=FeO‬‬
‫•‬
‫‪2CU+1/2O2=Cu2O‬‬
‫• ‪∆G°=-16303 cal/mol‬‬
‫• ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺗﻐﻴﻴﺮات اﻧﺮژي آزاد اﺳﺘﺎﻧﺪارد واﻛﻨﺸﻬﺎي ذﻛﺮ ﺷﺪه ﻣﺸﺨﺺ اﺳﺖ ﻛﻪ در دﻣﺎي‬
‫‪ 1250‬درﺟﻪ ﺳﺎﻧﺘﻴﮕﺮاد‪ Cu2S ،‬ﭘﺎﻳﺪارﺗﺮ از ‪ FeS‬و ‪ FeO‬ﭘﺎﻳﺪارﺗﺮ از ‪Cu2O‬‬
‫اﺳﺖ و اﮔﺮ ﻣﺲ ﺑﻪ ﺻﻮرت اﻛﺴﻴﺪ در ﺳﺮﺑﺎره ﻣﻮﺟﻮد ﺑﺎﺷﺪ‪ ،‬ﻃﺒﻖ واﻛﻨﺶ زﻳﺮ ﺑﻪ ﺳﻮﻟﻔﻴﺪ‬
‫ﻣﺲ ﺗﺒﺪﻳﻞ ﻣﻲ ﺷﻮد‪:‬‬
‫‪FeS+Cu2O=Cu2S+FeO ∆G°=-29548‬‬
‫• ‪∆G°= 29548 cal/mol‬‬
‫• ﺑﻨﺎﺑﺮاﻳﻦ ﺗﺎ زﻣﺎﻧﻲ ﻛﻪ ‪ FeS‬در ﻣﺤﻴﻂ ﻋﻤﻠﻴﺎت وﺟﻮد داﺷﺘﻪ ﺑﺎﺷﺪ‪ Cu2O ،‬ﻧﺎﭘﺎﻳﺪار ﺑﻮده و‬
‫ﺗﺒﺪﻳﻞ ﺑﻪ ﺳﻮﻟﻔﻴﺪ ﻣﺲ ﻣﻲ ﮔﺮدد‪.‬ﺑﻨﺎﺑﺮاﻳﻦ ﻣﻴﻞ ﺗﺮﻛﻴﺒﻲ ﺑﻴﺸﺘﺮ ﻣﺲ ﺑﺎ ﮔﻮﮔﺮد و ﻣﻴﻞ ﺗﺮﻛﻴﺒﻲ‬
‫ﻛﻤﺘﺮ آن ﺑﺎ اﻛﺴﻴﮋن ﻣﺒﻨﺎي ﺗﺸﻜﻴﻞ ﻣﺎت ﻣﺲ ﻣﻲ ﺑﺎﺷﺪ‪.‬‬
‫‪٩٣‬‬
‫• ﻣﺸﻜﻼت ﻛﻮره ﻫﺎي ﺷﻌﻠﻪ اي را ﻣﻲ ﺗﻮان ﺑﻪ اﻳﻦ ﺻﻮرت ﻧﺎم ﺑﺮد ﻛﻪ‪:‬‬
‫• ‪ -1‬ﻋﺪم اﺳﺘﻔﺎده از اﻧﺮژي ﻣﻮﺟﻮد در ﺳﻨﮕﻬﺎي ﺳﻮﻟﻔﻴﺪي ﺟﻬﺖ ذوب‪،‬‬
‫ﻣﺎ را ﻧﺎﮔﺰﻳﺮ ﺑﻪ اﺳﺘﻔﺎده از ﺳﻮﺧﺖ ﻣﻲ ﻧﻤﺎﻳﺪ ﻛﻪ ﻫﺰﻳﻨﻪ ﻫﺎ را‬
‫ﻳﺶ ﻣﻲﻲ دﻫﺪ‪.‬‬
‫اﻓﺰاﻳﺶ‬
‫ﺰ‬
‫• ‪ -2‬ﻏﻠﻈﺖ ‪ SO2‬ﺗﻮﻟﻴﺪي ﺑﻪ ﺣﺪي ﻧﻴﺴﺖ ﻛﻪ ﺑﺮاي ﺗﻬﻴﻪ اﺳﻴﺪ‬
‫ﺳﻮﻟﻔﻮرﻳﻚ اﺳﺘﻔﺎده ﺷﻮد و ﻣﻘﺮون ﺑﻪ ﺻﺮﻓﻪ ﻧﻴﺴﺖ واز ﻃﺮف دﻳﮕﺮ‬
‫رﻫﺎ ﻛﺮدن آن در اﺗﻤﺴﻔﺮ ﻫﻢ ﺳﺒﺐ اﻳﺠﺎد آﻟﻮدﮔﻲ ﻣﻲ ﺷﻮد‪.‬‬
‫• ‪ -3‬ﺣﻀﻮر ﻣﮕﻨﺘﻴﺖ در ﺷﺎرژ و ﻳﺎ ﺳﺮﺑﺎره ﺑﺮﮔﺸﺘﻲ از ﻛﻨﻮرﺗﻮر‬
‫ﺳﺒﺐ ﻣﻲ ﺷﻮد ﻛﻪ در ﺗﻪ ﻛﻮره ﺗﻪ ﻧﺸﻴﻦ ﺷﺪه و ﻇﺮﻓﻴﺖ ﻣﻔﻴﺪ ﻛﻮره‬
‫را ﻛﺎﻫﺶ داده و ﻫﻤﭽﻨﻴﻦ ﺳﺒﺐ ﻣﻲ ﺷﻮد ﻛﻪ ﻗﺮار ﮔﺮﻓﺘﻦ ﻣﮕﻨﺘﻴﺖ ﺑﻪ‬
‫ﺻﻮرت ﻻﻳﻪ اي ﺑﻴﻦ ﺳﺮﺑﺎره و ﻣﺎت ﻣﺎﻧﻊ از ﺟﺪاﻳﺶ ﻛﺎﻣﻞ اﻳﻦ دو‬
‫‪ ٩٤‬ﺷﻮد‪.‬‬
‫جلسه ‪٢‬‬
‫‪۴٧‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪Flash Smelting‬‬
‫‪• There are two types of flash smelting: the‬‬
‫)‪Outotec process (~30 furnaces in operation‬‬
‫‪and the Inco process (four furnaces in‬‬
‫‪operation).‬‬
‫‪• The Outotec process was formerly known as‬‬
‫‪the Outokumpu process.‬‬
‫‪95‬‬
‫• ‪ -2‬روﺷﻬﺎي ذوب ﺗﺸﻌﺸﻌﻲ ‪:‬‬
‫• اﻳﻦ روش ﺑﺮاي ذوب ﻛﻨﺴﺎﻧﺘﺮه ﺳﻮﻟﻔﻴﺪ ﻣﺲ و ﻧﻴﻜﻞ ﻛﺎرﺑﺮد دارد‪ .‬در اﻳﻦ روش ﻛﻨﺴﺎﻧﺘﺮه ﺳﻮﻟﻔﻴﺪي‬
‫رﻳﺰ و ﺧﺸﻚ‪ ،‬ﻣﻮاد ﮔﺪاز آور ﺑﻪ ﻫﻤﺮاه ﻫﻮاي ﻏﻨﻲ از اﻛﺴﻴﮋن در دﻣﺎﻳﻲ ﺣﺪود ‪ 1230‬درﺟﻪ‬
‫ﺳﺎﻧﺘﻴﮕﺮاد ﺗﺰرﻳﻖ ﻣﻲ ﺷﻮﻧﺪ‪ .‬ورود اﻳﻦ ﻣﻮاد ﺑﻪ داﺧﻞ ﻣﺤﻔﻈﻪ ﺳﺒﺐ واﻛﻨﺶ ﻛﻨﺴﺎﻧﺘﺮه ﺳﻮﻟﻔﻴﺪي ﺑﺎ‬
‫اﻛﺴﻴﮋن ﻣﻲ ﮔﺮدد‪.‬‬
‫ﻣﻮاد زﻳﺮ ااﺳﺖ‪:‬‬
‫ﺷﺎﻣﻞ ا‬
‫• ﻣﺤﺼﻮل ﺑﻪ دﺳﺖ آآﻣﺪه ﺎ‬
‫• ‪ -1‬ﻣﺎت ﻣﺬاب ﻏﻨﻲ از ﻣﺲ)‪ %65-45‬ﻣﺲ(‬
‫• ‪-2‬ﺳﺮﺑﺎره ﻣﺬاب ﺷﺎﻣﻞ ﮔﺎﻧﮓ و اﻛﺴﻴﺪﻫﺎي آﻫﻦ ﺣﺎﺻﻞ از اﻛﺴﻴﺪاﺳﻴﻮن ‪ ،FeS‬ﻣﻮاد ﮔﺪاز آور‬
‫اﻛﺴﻴﺪي و ﺗﺎ ‪ %5‬ﻣﺲ‬
‫• ‪ -3‬ﮔﺎز ﺧﺮوﺟﻲ ﻣﺤﺘﻮي ‪ 10)SO2‬ﺗﺎ ‪ (%80‬ﺑﺴﺘﻪ ﺑﻪ ﻣﻴﺰان اﻛﺴﻴﮋن در ﻫﻮاي دﻣﻴﺪه ﺷﺪه‬
‫ﻋﺒﺎرﺗﻨﺪ ازز‪:‬‬
‫ﻛﻮره ﻫﺎ ﺒ ر‬
‫ﻮع ﻮر‬
‫ﻳﻦ ﻧﻮع‬
‫اﻧﺠﺎمم ﺷﺪه درر اﻳﻦ‬
‫ي ﺠ‬
‫واﻛﻨﺸﻬﺎي‬
‫• و ﻬ‬
‫• ‪2CuFeS2+13/2O2Æ(Cu2S.1/2FeS)+3/2FeO+5/2SO2‬‬
‫• ‪FeS2+5/2O2=FeO+2SO2‬‬
‫• ‪2FeO+SiO2=2FeO.SiO2‬‬
‫ﺗﻤﺎﻣﻲ واﻛﻨﺸﻬﺎي ﻓﻮق ﮔﺮﻣﺎزا ﺑﻮده و ﺑﺨﺶ ﻋﻤﺪه ﺣﺮارت ﻻزم ﺑﺮاي ﮔﺮم ﻛﺮدن‪ ،‬ذوب و ﻓﻮق ﮔﺪاز‬
‫•‬
‫‪٩٦‬‬
‫ﻣﻮرد ﻧﻴﺎز را ﻓﺮاﻫﻢ ﻣﻲ ﻛﻨﻨﺪ‪ .‬اﻧﻮاع ﻛﻮره ﻫﺎي ﺗﺸﻌﺸﻌﻲ اوﺗﻮﻛﻤﭙﻮ‪ ،‬اﻳﻨﻜﻮ ﻣﻲ ﺑﺎﺷﻨﺪ‪.‬‬
‫جلسه ‪٢‬‬
‫‪۴٨‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫ﻛﻮره ﻫﺎي ﺗﺸﻌﺸﻌﻲ اوﺗﻮﻛﻤﭙﻮ‪ :‬وﻳﮋﮔﻴﻬﺎي ﻋﻤﺪه اوﺗﻮﻛﻤﭙﻮ ﻋﺒﺎرﺗﻨﺪاز‪:‬‬
‫اﻟﻒ‪ -‬ﺗﺰرﻳﻖ ﻛﻨﺴﺎﻧﺘﺮه از ﻃﺮﻳﻖ ﻣﺸﻌﻞ ﻫﺎ ﺳﻘﻮط ﻋﻤﻮدي ذرات ﺷﺎرژ در ﻣﺤﻔﻈﻪ ﻋﻤﻮدي واﻛﻨﺶ‬
‫ب‪ -‬اﺳﺘﻔﺎده از ﻫﻮاي ﭘﻴﺸﮕﺮم ﺷﺪه و ﻏﻨﻲ از اﻛﺴﻴﮋن ﺑﺮاي اﻧﺠﺎم اﻛﺴﻴﺪاﺳﻴﻮن‬
‫ج‪ -‬اﺳﺘﻔﺎده ﻛﻢ از ﺳﻮﺧﺖ ﻓﺴﻴﻠﻲ‬
‫• در اﻳﻦ ﻛﻮره ﻫﺎ ﻣﻮاد ﺧﺸﻚ ﺑﺎ ﻫﻮاي ﻏﻨﻲ ﺷﺪه از‬
‫اﻛﺴﻴﮋن از ﻃﺮﻳﻖ ﻣﺸﻌﻞ ﻫﺎﻳﻲ ﺑﻪ درون ﻣﺤﻔﻈﻪ ﻋﻤﻮدي‬
‫ﻛ‬
‫واﻛﻨﺶ ﺗﺰرﻳﻖ ﺷﺪه و در اﺛﺮ واﻛﻨﺶ ﺑﻴﻦ ﻛﻨﺴﺎﻧﺘﺮه و‬
‫ﻫﻮاي ﻏﻨﻲ از اﻛﺴﻴﮋن ﺗﺸﻮﻳﻪ ‪ ،‬ذوب و ﺗﺎ ﺣﺪي ﺗﺒﺪﻳﻞ‬
‫اﻧﺠﺎم ﻣﻲ ﭘﺬﻳﺮد‪ .‬ﻋﻤﻞ ﺟﺪاﻳﺶ ﻣﺎت و ﺳﺮﺑﺎره در ﻣﺤﻔﻈﻪ‬
‫ﺟﺪاﻳﺶ ﺻﻮرت ﭘﺬﻳﺮﻓﺘﻪ و ﻫﺮ ﻛﺪام از اﻳﻦ اﺟﺰا از‬
‫ﻣﺠﺮاﻫﺎي ﺧﺎص ﺧﻮد ﺗﺨﻠﻴﻪ ﻣﻲ ﺷﻮﻧﺪ‪ .‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﻳﻨﻜﻪ‬
‫ﻻزم‬
‫ﺣﺮارت ﻻز‬
‫ﺑﺮاي ﺗﺎﺗﺎﻣﻴﻦ ا ت‬
‫اﻛﺴﻴﺪاﺳﻴﻮن ا‬
‫ﺣﺎﺻﻞ از اﻛ ا‬
‫ﮔﺮﻣﺎي ﺎ ﻞ‬
‫ﮔ ﺎ‬
‫ﺟﻬﺖ ذوب‪ ،‬ﺗﺜﺒﻴﺖ دﻣﺎي ﻣﺬاب ﻣﺎت و ﺳﺮﺑﺎره در ﻣﺤﻔﻈﻪ‬
‫ﺟﺪاﻳﺶ و ﺗﺴﺮﻳﻊ ﻋﻤﻞ ﺟﺪاﻳﺶ ﻛﺎﻓﻲ ﻧﻴﺴﺖ‪ ،‬ﻣﺸﻤﻌﻠﻬﺎي‬
‫ﻛﻤﻜﻲ اﺣﺘﺮاق ﻛﻪ ﺑﺎ ﺳﻮﺧﺖ ﻓﺴﻴﻠﻲ ﻛﺎر ﻣﻲ ﻛﻨﺪ ﻧﺼﺐ ﺷﺪه‬
‫اﻧﺪ‪.‬‬
‫‪٩٧‬‬
‫‪Otokumpu smelter‬‬
‫‪٩٨‬‬
‫جلسه ‪٢‬‬
‫‪۴٩‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪Outotec flash furnace‬‬
‫‪99‬‬
‫‪ :INCO‬دﻣﺶ اﻓﻘﻲ ﻛﻨﺴﺎﻧﺘﺮه ﺧﺸﻚ ﺑﻪ ﻫﻤﺮا اﻛﺴﻴﮋن ﺻﻨﻌﺘﻲ ﺑﻪ ﻛﻮره در دﻣﺎﻳﻲ در ﺣﺪود‬
‫‪ 1225‬درﺟﻪ ﺳﺎﻧﺘﻴﮕﺮاد ﺳﺒﺐ واﻛﻨﺶ ﺑﻴﻦ ﻛﻨﺴﺎﻧﺘﺮه و اﻛﺴﻴﮋن ﺷﺮوع واﻛﻨﺶ ﺗﺸﻮﻳﻪ ﺷﺪه‬
‫وذوب ﺟﺰﺋﻲ رخ ﻣﻲ دﻫﺪ‪ .‬ﺗﻮﻟﻴﺪ ﻣﺎت ﺑﺎ ﻋﻴﺎر ‪ %50‬ﻣﺲ وﺳﺮﺑﺎره ﺑﺎ ﺣﺪود ‪ %1‬ﻣﺲ‬
‫ﺣﺮارت ﻻزم ﺟﻬﺖ ﺗﺎﻣﻴﻦ درﺟﻪ ﺣﺮارت از ﺳﻮﺧﺘﻦ و اﻛﺴﻴﺪاﺳﻴﻮن ﺳﻨﮕﻬﺎي ﺳﻮﻟﻔﻴﺪي ﺗﺎﻣﻴﻦ‬
‫ﻣﻲ ﺷﻮد‪.‬‬
‫‪١٠٠‬‬
‫جلسه ‪٢‬‬
‫‪Inco smelter‬‬
‫‪۵٠‬‬
٠٧/٢٩/١۴٣۵
Inco flash furnaces
• At the start of 2010 there were four Inco flash
furnaces in operation: 1-Almalyk,Uzbekistan
• 2-Hayden,
2-Hayden Arizona
• 3,4-Sudbury, Ontario (two furnaces)
• The Almalyk and Hayden furnaces smelt
Cu-Fe-S concentrates.
• The Sudburyy furnaces smelt Ni-Cu-Co-Fe-S
concentrates to produce ~45% Ni+Cu+Co matte
and ~1% Ni+Cu+Co slag.
101
INCO VS. OUTOTEC FLASH SMELTING
• Outotec advantages:
• (a) Higher concentrate throughput rates
((double that of the Inco flash furnace))
• (b) Single concentrate burner in place of
four Inco burners
• (c) Recovery of offgas heat in a heat
recovery boiler as useful steam
• (d) Dry dust recycle
102
۵١
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫‪ :Noranda smelting furnace‬اﻳﺪه اﺳﺘﻔﺎده از اﻳﻦ ﻧﻮع ﻛﻮره ﻫﺎ اﻧﺠﺎم ﻋﻤﻠﻴﺎت ذوب و‬
‫ﺗﺒﺪﻳﻞ در ﻳﻚ ﻛﻮره ﺑﻮد‪ .‬ﻣﻮاد ﺷﺎرژ ﺷﺎﻣﻞ ﻛﻨﺴﺎﻧﺘﺮه‪ ،‬ﻓﻼﻛﺲ‪ ،‬ﻗﺮاﺿﻪ ﻫﺎ و زﻏﺎل ﻧﺮﻣﻪ ﺑﻪ ﺻﻮرت‬
‫ﭘﻴﻮﺳﺘﻪ از اﻧﺘﻬﺎي ﻛﻮره ﺑﻪ داﺧﻞ ﺣﻤﺎم ﻣﺬاب ﺗﺰرﻳﻖ ﻣﻲ ﺷﻮﻧﺪ‪ .‬دﻣﻴﺪن ﻫﻮاي ﻏﻨﻲ از اﻛﺴﻴﮋن از ﻃﺮﻳﻖ‬
‫ﺗﻮﻳﺮﻫﺎ ﺑﻪ ﻻﻳﻪ ﻣﺬاب ﻣﺎت اﻧﺠﺎم ﺷﺪه و ﮔﺎزﻫﺎي ﺣﺎﺻﻞ از ﻃﺮﻳﻖ ﻟﻮﻟﻪ ﻫﺎ ﺧﺎرج ﻣﻲ ﺷﻮد‪ .‬ﺟﺪاﻳﺶ ﺳﺮﺑﺎره‬
‫و ﻣﺎت در ﻣﺤﻔﻈﻪ ﺻﻮرت ﻣﻲ ﭘﺬﻳﺮد‪ .‬در اﺛﺮ واﻛﻨﺸﻬﺎي اﺣﻴﺎﺋﻲ ﺗﺒﺪﻳﻞ ﺟﺰﺋﻲ رخ ﻣﻲ دﻫﺪ‪.‬‬
‫اﺷﻜﺎﻻت‪ :‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﻧﺠﺎمم واﻛﻨﺶ ذوب و ﺗﺒﺪﻳﻞ در ﻳﻚ ﻣﺤﻔﻈﻪ‬
‫‪ -1‬ﺗﻠﻔﺎت ﺑﺎﻻي ﻣﺲ در ﺳﺮﺑﺎره‬
‫‪ -2‬ﻧﺎﺧﺎﻟﺼﻲ ﻣﺲ ﺑﻠﻴﺴﺘﺮ ﺗﻮﻟﻴﺪي ) در ﻧﺘﻴﺠﻪ ﺑﺎﻳﺴﺘﻲ از ﻛﻨﺴﺎﻧﺘﺮه ﻫﺎي ﺑﺎ ﻋﻴﺎر ﺑﺎﻻ و ﺳﺮﺑﺎره ﻏﻴﺮ ﻗﺎﺑﻞ‬
‫دوررﻳﺰ اﺳﺘﻔﺎده ﻛﺮد(‪ .‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﻳﻦ اﺷﻜﺎﻻت اﻣﺮوزه ﻓﻘﻂ ﺗﺒﺪﻳﻞ ﺟﺰﺋﻲ در اﻳﻦ ﻛﻮره ﻫﺎ اﻧﺠﺎم ﺷﺪه و‬
‫ﻣﺎت ﭘﺮﻋﻴﺎر ﺗﻮﻟﻴﺪي)‪ 70‬ﺗﺎ ‪ (%75‬در ﻛﻨﻮرﺗﻮر ﭘﻴﺮس‪ -‬اﺳﻤﻴﺖ ﻓﺮآوري ﻣﻲ ﺷﻮد‪.‬‬
‫‪١٠٣‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫•‬
‫‪ :Mitsubishi process‬اﻳﻦ ﻓﺮآﻳﻨﺪ ﻳﻚ روش ﭘﻴﻮﺳﺘﻪ ﺑﺮاي اﻧﺠﺎم ﻋﻤﻞ‬
‫ذوب و ﺗﺒﺪﻳﻞ در ﺗﻬﻴﻪ ﻣﺎت ﻣﺲ و ﻣﺲ ﺑﻠﻴﺴﺘﺮ از آن ﻣﻲ ﺑﺎﺷﺪ‪ .‬ﻋﻤﻠﻴﺎت در ﺳﻪ‬
‫ﻣﺮﺣﻠﻪ و در ﺣﻘﻴﻘﺖ در ‪ 3‬ﻣﺤﻔﻈﻪ اﻧﺠﺎم ﻣﻲ ﺷﻮد‪:‬‬
‫‪ -1‬ذوب ﻣﻮاد ﺧﺎم ﺑﺎ دﻣﺶ ﻫﻮاي ﻏﻨﻲ از اﻛﺴﻴﮋن‬
‫ﻣﺤﻔﻈﻪ دوم‬
‫ﻣﺬاب در ﻔﻈ‬
‫ﺳﺮﺑﺎره و ﺎﻣﺎت ﺬا‬
‫ﺟﺪاﻳﺶ ﺎ‬
‫‪ -2‬ا ﺶ‬
‫‪ -3‬ﺗﺒﺪﻳﻞ ﻣﺎت ﭘﺮﻋﻴﺎر ﻣﺲ ﺑﻪ ﻣﺲ ﺑﻠﻴﺴﺘﺮ‬
‫ﻣﻮاد از ﺑﺨﺶ ﺑﺎﻻﻳﻲ ﻛﻮره اول و از ﻃﺮﻳﻖ ﻻﻧﺴﻬﺎي دﻣﺸﻲ ﺑﻪ ﻫﻤﺮاه ﻫﻮاي‬
‫ﻏﻨﻲ از اﻛﺴﻴﮋن ﺑﻪ داﺧﻞ ﻣﺬاب ﻣﻮﺟﻮد دﻣﻴﺪه و ﺗﺰرﻳﻖ ﻣﻴﺸﻮد‪ .‬ﺑﺎ اﻧﺠﺎم‬
‫ﺳﺮﺑﺎره وﻣﺎت‪ ،‬اﻧﺘﻘﺎل ﺑﻪ ﻣﺤﻔﻈﻪ دوم اﻧﺠﺎم ﺷﺪه‪ ،‬ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ‬
‫واﻛﻨﺸﻬﺎ و ﺗﻮﻟﻴﺪ ﺳ ﺑﺎره‬
‫ﺳﻴﺎﻟﻴﺖ دو ﻻﻳﻪ و ﭼﮕﺎﻟﻲ اﻧﻬﺎ ﻋﻤﻞ ﺟﺪاﻳﺶ ﺻﻮرت ﻣﻲ ﭘﺬﻳﺮد‪ .‬در ﻧﻬﺎﻳﺖ ﺑﺎ‬
‫ﺗﻮﺟﻪ ﺑﻪ ﺳﻴﺴﺘﻢ ﺳﻪ ﺗﺎﻳﻲ ‪ Cu2O-CaO-Fe3O4‬ﻋﻤﻞ ﺗﺒﺪﻳﻞ ﺑﻪ ﻣﺲ‬
‫ﺑﻠﻴﺴﺘﺮ ‪ Blister copper‬رخ ﻣﻲ دﻫﺪ‪.‬‬
‫‪١٠٤‬‬
‫جلسه ‪٢‬‬
‫‪۵٢‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪Mitsubishi process‬‬
‫‪١٠٥‬‬
‫‪Converting : Converting is oxidation of molten Cu-Fe-S matte to form‬‬
‫‪molten 'blister' copper (99% Cu).‬‬
‫‪Oxidizing Fe and S from the matte with oxygen-enriched air or air 'blast'.‬‬
‫)‪(in the Peirce-Smith converter with submerged tuyeres‬‬
‫ﻫﺪف از اﻳﻦ ﻣﺮﺣﻠﻪ ﺧﺎرج ﻧﻤﻮدن آﻫﻦ و ﮔﻮﮔﺮد و دﻳﮕﺮ ﻧﺎﺧﺎﻟﺼﻴﻬﺎ از ﻣﺎت ﻣﻲ ﺑﺎﺷﺪ‪ .‬ﺑﺮاي اﻧﺠﺎم اﻳﻦ ﻋﻤﻞ‬
‫ﻣﺎت ﻣﺬاب ﺗﻬﻴﻪ ﺷﺪه ﺑﻪ ﻛﻨﻮرﺗﻮرﻫﺎي ﻣﺠﻬﺰ ﺑﻪ ﺳﻴﺴﺘﻢ دﻣﺸﻲ از ﻛﻨﺎر ﺷﺎرژ ﻣﻲ ﺷﻮﻧﺪ‪ .‬اﻳﻦ ﻣﺤﻔﻈﻪ اﺳﺘﻮاﻧﻪ‬
‫ﻗﻄﺮ و ‪ 9‬ﻣﺘﻣﺘﺮ ﻃﻮل ﺑﻮده ﻛﻪ ﺑﺎ ﻻﻳﻪ ااي از‬
‫ﺑﻴﻦ ‪ 100‬ﺗﺎ ‪ 200‬ﺗﻦ ﻣﺎت ﻣﻣﻲ ﺑﺎﺷﺪ‪ .‬اﺑﻌﺎد در ﺣﺪود ‪ 4‬ﻣﺘﻣﺘﺮ ﻗﻄ‬
‫ﻇﺮﻓﻴﺖ ﺑ ﻦ‬
‫ااي ﺑﺎ ﻇ ﻓ ﺖ‬
‫ﻣﻮاد ﻧﺴﻮز ﻛﺮم‪-‬ﻣﻨﻴﺰﻳﻢ آﺳﺘﺮ ﻛﺸﻲ ﺷﺪه اﺳﺖ‪.‬‬
‫در ﻣﺮﺣﻠﻪ ﺗﺒﺪﻳﻞ‪ ،‬اﺗﻤﺴﻔﺮ ﻛﻮره در ﻣﻘﺎﻳﺴﻪ ﺑﺎ ﻣﺮﺣﻠﻪ ﻗﺒﻞ)ﮔﺪاز( ﻛﻪ ﺧﻨﺜﻲ و ﻳﺎ ﻛﻤﻲ اﻛﺴﻴﺪان ﺑﻮد‪ ،‬ﻛﺎﻣﻼ‬
‫اﻛﺴﻴﺪان اﺳﺖ‪ .‬از ﻃﺮﻳﻖ دﻣﻨﺪه ﻫﺎ ﻫﻮاي ﻏﻨﻲ از اﻛﺴﻴﮋن ﺑﻪ داﺧﻞ ﻣﺎت ﻣﺬاب ﺗﺰرﻳﻖ ﻣﻲ ﺷﻮد و ﻣﺎده ﺣﺎﺻﻠﻪ‬
‫ﺑﻪ ﻧﺎم ﻣﺲ ﺑﻠﻴﺴﺘﺮ ﻣﻌﺮوف اﺳﺖ ﻛﻪ ﺑﻮاﺳﻄﻪ ﻣﺤﺒﻮس ﺷﺪن ﮔﺎز دي اﻛﺴﻴﺪ ﮔﻮﮔﺮد در ﻣﺤﺼﻮل و ﺗﺎول زدن‬
‫‪١٠٦‬‬
‫‪ 106‬ﺑﻪ اﻳﻦ ﻧﺎم ﻣﻌﺮوف اﺳﺖ‪.‬‬
‫ﺳﻄﺢ آن‬
‫جلسه ‪٢‬‬
‫‪۵٣‬‬
٠٧/٢٩/١۴٣۵
The products of converting (autothermal
process) are:
(a) molten blister copper which is sent to fireand electrorefining
(b) molten iron-silicate slag to Cu recovery
recovery,
then discard
(c) SO2-bearing offgas cooling, dust removal
and So4 manufacture.
107
١٠٧
Converting takes place in two
stages:
(a) the Slag-forming stage when Fe
and S are oxidized to FeO, Fe304 and SO2
by reactions like:
Adding
1385°C silica
1597°C flux
Slag
formation
The slag-forming stage
is finished when the Fe
Product: white metal
(75-80%Cu) and <1%Fe in the matte has been
lowered to about 1%. 108
۵۴
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
(b) the copper-making stage: Blowing air and oxygen into molten
‘white metal’ creates a turbulent Cu2S copper mixture. sulfur in Cu2S is
oxidized to SO2. Thus, the blister copper product of converting is low in
both S and Oxygen (0.001- 0.03% S, 0.1-0.8% O). Nevertheless, if this copper
were cast, the S and O would form SO2 bubbles or blisters.
Industrially, matte is charged to the converter in several steps.
1-Oxidation of FeS 2-removing slag 3- adding new matte . 4Reaching sufficient amount of Cu in the converter (100- 250 tonnes
Cu as molten Cu2S) 5- reaching less than 1% Fe in the matte 6-final
slag is removed .
Cu2S-Cu-Cu2O gas foam/emulsion
metallic copper
Sketch of Peirce-Smith converter and its
two immiscible liquids
109
Slagging ‫ توليد سرباره‬-١ •
‫• در اﻳﻦ ﻣﺮﺣﻠﻪ ﺳﻮﻟﻔﻴﺪ آﻫﻦ ﻣﻮﺟﻮد در ﻣﺎت اﻛﺴﻴﺪ ﺷﺪه و و ﺑﺎ اﻓﺰودن ﻓﻼﻛﺲ ﺳﻴﻠﻴﻜﺎﺗﻲ‬
.(‫از ﻛﻨﻮرﺗﻮر ﺧﺎرج ﻣﻲ ﺷﻮد)ﺗﻮﻟﻴﺪ ﻓﺎز ﻓﺎﻳﺎﻟﻴﺖ‬
:‫• ﺗﺸﻜﻴﻞ ﻓﺎز ﻣﮕﻨﺘﻴﺖ در ﻧﺰدﻳﻜﻲ ﻟﻮﻟﻪ ﻫﺎي دﻣﺶ ﻫﻮا رخ ﻣﻲ دﻫﺪ‬
‫ در اﺑﺘﺪا ﺑﺎ اﻓﺰودن ﻣﺎت ﺑﻪ ﻛﻨﻮرﺗﻮر و دﻣﺶ ﻫﻮا‬.‫ﺗﻮﻟﻴﺪ ﺳﺮﺑﺎره در ﭼﻨﺪ ﻣﺮﺣﻠﻪ اﻧﺠﺎم ﻣﻴﺸﻮد‬
‫ﺑﻪ آن ﻓﺮآﻳﻨﺪ آﻏﺎز ﺷﺪه و ﭘﺲ از آن ﺑﺎ ﻛﺞ ﻛﺮدن ﻛﻨﻮرﺗﻮر ﺳﺮﺑﺎره ﻗﺮار ﮔﺮﻓﺘﻪ روي‬
‫ﻣﺮﺣﻠﻪ‬
‫ﺳﻮﻟﻔﻴﺪ آآﻫﻦ در ﻠ‬
‫اﻛﺴﻴﺪ ﺷﺷﺪن ﻟﻔ‬
‫ اﻛ‬.‫ﺗﺨﻠﻴﻪ ﻣﻲ ﺷﺷﻮد‬
‫ ﺗﺨﻠ‬،‫اﺳﺖ‬
‫ﻣﺎت ا ﺖ‬
‫ﺣﻞ در ﺎت‬
‫ﻗﺎﺑﻞ ﻞ‬
‫ﺎت ﻛﻛﻪ ﻏﻏﻴﺮ ﻗﺎ ﻞ‬
‫ﻣﺎت‬
‫ﻛﻨﻮرﺗﻴﻨﮓ ﺣﺮارت ﻻزم ﺑﺮاي ﺟﺒﺮان ﺗﻠﻔﺎت ﺣﺮارﺗﻲ و ﻣﺬاب ﻧﮕﻬﺪاﺷﺘﻦ ﻣﺎت و ﺳﺮﺑﺎره‬
،‫ آﻫﻦ‬%50-40 ،‫ ﻣﺲ‬%9-2 ‫ ﺳﺮﺑﺎره ﺗﻮﻟﻴﺪ ﺷﺪه در اﻳﻦ ﻣﺮﺣﻠﻪ داراي‬.‫را ﺗﺎﻣﻴﻦ ﻣﻴﻜﻨﺪ‬
‫ ﺑﺎ ﺗﻮﺟﻪ وﺟﻮد ﻣﺲ در ﺳﺮﺑﺎره‬.‫ ﻣﻲ ﺑﺎﺷﺪ‬Cao+MgO % 5-1 ‫ و‬SiO2 %30-20
.‫ﺻﻮرت )اﻛﺴﻴﺪ ﻣﺲ وﻳﺎ ﻣﺎت ﻣﺲ ﻣﺤﺒﻮس ﺷﺪه در آن( ﺑﺎﻳﺴﺘﻲ اﻳﻦ ﻣﺲ ﺑﺎزﻳﺎﺑﻲ ﺷﻮد‬110
‫ﺑﻪ‬
١١٠
۵۵
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫• ﻳﻚ راه ﺑﺮاي ﺑﺎزﻳﺎﺑﻲ ﻣﺲ ﺳﺮﺑﺎره‪ ،‬ﺑﺮﮔﺮداﻧﺪن آن ﺑﻪ ﻛﻨﻮرﺗﻮر اﺳﺖ ﻛﻪ ﺑﺎ اﻳﻦ ﻋﻤﻞ ﻣﺲ ﻣﻮﺟﻮد‬
‫در ﺳﺮﺑﺎره اﺣﻴﺎ ﺷﺪه و ﺑﻪ ﻣﺎت ﺑﺮﻣﻲ ﮔﺮدد‪ .‬ﻣﺸﻜﻠﻲ ﻛﻪ ﺑﻮﺟﻮد ﻣﻲ آﻳﺪ ﺑﻪ ﻋﻠﺖ اﺗﻤﺴﻔﺮ ﺑﻪ ﺷﺪت‬
‫اﻛﺴﻴﺪان ﻛﻨﻮرﺗﻮر اﺣﺘﻤﺎل ﺣﻀﻮر ﻣﮕﻨﺘﻴﺖ و ﻫﻤﺎﺗﻴﺖ ﻋﻼوه ﺑﺮ ‪ FeO‬وﺟﻮد دارد ﻛﻪ ﻣﮕﻨﺘﻴﺖ‬
‫ﺑﻪ ﺗﻪ ﻛﻮره رﻓﺘﻪ و ﺗﻪ ﻧﺸﻴﻦ ﻣﻲ ﺷﻮد و ﺳﺒﺐ ﻛﺎﻫﺶ ﺣﺠﻢ ﻣﻔﻴﺪ ﻛﻨﻮرﺗﻮر ﻣﻲ ﮔﺮدد‪.‬ﺑﺮاي ﺣﻞ اﻳﻦ‬
‫ﻣﺸﻜﻞ ﻣﻲ ﺗﻮان ﺑﻪ دو روش ﻋﻤﻞ ﻛﺮد‪:‬‬
‫ﺧﻨﺜﻲ از ﻛﻒ ﻛﻨﻮرﺗﻮر و در ﻧﺘﻴﺠﻪ ﻣﻤﺎﻧﻌﺖ از ﺗﻪ ﻧﺸﻴﻦ ﺷﺪه ﻣﮕﻨﺘﻴﺖ‬
‫• ‪ -1‬ﺗﺰرﻳﻖ ﮔﺎز ﺧﻨﺜ‬
‫وﺑﺮﮔﺮداﻧﺪه آن ﺑﻪ ﺳﺮﺑﺎره‬
‫• ‪ -2‬اﻓﺰودن ﻣﻘﺪاري ﻛﺮﺑﻦ ﺑﻪ ﻫﻤﺮاه ﺳﺮﺑﺎره ﻛﻨﻮرﺗﻮر و در ﻧﺘﻴﺠﻪ ﺗﺒﺪﻳﻞ ‪ Fe3O4‬ﺑﻪ ‪FeO‬‬
‫‪-٢‬مرحله تشکيل مس بليستر‪:‬‬
‫• ﭘﺲ از ﻛﺎﻣﻞ ﺷﺪن ﻣﺮﺣﻠﻪ ﺗﻮﻟﻴﺪ ﺳﺮﺑﺎره ﻛﻨﻮرﺗﻮر داراي ‪ Cu2S‬اﺳﺖ ﻛﻪ ﺑﻪ ﻓﻠﺰ ﺳﻔﻴﺪ ﻣﻌﺮوف‬
‫ﺗﺸﻮﻳﻪﻪ ﻣﻲ ﮔﮔﺮدد‪:‬‬
‫ع ﺗﺸ‬
‫واﻛﻨﺸﻬﺎﻳﻲ از ﻧﻧﻮع‬
‫دادن اﻛﻨﺸﻬﺎ‬
‫خ ا‬
‫اﻛﺴﻴﺪاﺳﻴﻮن ﺳﺒﺐ رخ‬
‫اداﻣﻪﻪ اﻛ ا‬
‫اﺳﺖ‪ .‬ا ا‬
‫ا ﺖ‬
‫‪١١١‬‬
‫‪111‬‬
‫• ﻣﺮﺣﻠﻪ ﺗﺒﺪﻳﻞ‪ :‬ﻣﺬاب ﻣﺎت ﻣﺲ ﺗﻮﻟﻴﺪي در ﻣﺮﺣﻠﻪ ذوب ﻋﻼوه ﺑﺮ ﻋﻨﺎﺻﺮ اﺻﻠﻲ ﻣﺲ‪ ،‬آﻫﻦ و‬
‫ﮔﻮﮔﺮد‪ ،‬داراي ﻣﻘﺎدﻳﺮ ﺟﺰﺋﻲ ﻋﻨﺎﺻﺮي ﻣﺎﻧﻨﺪ ‪ As,Bi,Zn,Pb,Sn,Ni‬و ﻋﻨﺎﺻﺮ ﻗﻴﻤﺘﻲ‬
‫اﺳﺖ ﻛﻪ دﻣﺎﻳﻲ در ﺣﺪود ‪ 1100‬درﺟﻪ ﺳﺎﻧﺘﻴﮕﺮاد دارد‪ .‬اﻳﻦ ﻣﺬاب ﺑﻪ ﻛﻨﻮرﺗﻮر ﺑﺮاي اﻧﺠﺎم ﻋﻤﻞ‬
‫ﺗﺒﺪﻳﻞ ﺷﺎرژ ﻣﻲ ﺷﻮد‪ .‬ﻫﺪف اﻳﻦ ﻣﺮﺣﻠﻪ ﺣﺬف ﮔﻮﮔﺮد و آﻫﻦ و ﺳﺎﻳﺮ ﻧﺎﺧﺎﻟﺼﻲ ﻫﺎ و ﺑﻪ دﺳﺖ‬
‫آوردن ﻣﺲ ﺑﻠﻴﺴﺘﺮ ﻣﻲﻲ ﺑﺎﺷﺪ‪.‬‬
‫• ﻓﺮآﻳﻨﺪ ﺗﺒﺪﻳﻞ ﺑﺎ دﻣﺶ ﻫﻮا در دﻣﺎي ‪ 1250-1150‬درﺟﻪ ﺳﺎﻧﺘﻴﮕﺮاد ﺑﻪ ﻣﺬاب ﻣﺎت آﻏﺎز ﺷﺪه و ﻃﻲ‬
‫دو ﻣﺮﺣﻠﻪ اﻧﺠﺎم ﻣﻲ ﺷﻮد‪:‬‬
‫• ‪ -1‬در ﻣﺮﺣﻠﻪ اول ﺗﻤﺎﻣﻲ آﻫﻦ اﻛﺴﻴﺪ ﺷﺪه و ﻓﻠﺰ ﺳﻔﻴﺪ )‪ (Cu2S‬ﺑﻪ دﺳﺖ ﻣﻲ آﻳﺪ‪.‬‬
‫‪2FeO+SiO2=2FeO.SiO2‬‬
‫• ‪FeS+3/2O2=FeO+SO2‬‬
‫• ﺑﺎ اﻓﺰودن ﺳﻴﻠﻴﺴﻴﻢﻢ ﺑﻪ ﻋﻨﻮان ﮔﺪازآور دراﻳﻦ ﻣﺮﺣﻠﻪ اﻣﻜﺎن اﻛﺴﻴﺪ ﺷﺪن ﺟﺰﺋﻲﻲ ﺳﻮﻟﻔﻴﺪ ﻣﺲ‬
‫وﺟﻮد دارد‪ ،‬ﻛﻪ ﺑﻪ ﻋﻠﺖ ﺣﻀﻮر اﻛﺴﻴﺪ آﻫﻦ دوﺑﺎره ﺑﻪ ﺳﻮﻟﻔﻴﺪ ﻣﺲ ﺗﺒﺪﻳﻞ ﻣﻲ ﺷﻮد‪.‬‬
‫ﺗﺸﻜﻴﻞ ‪ Fe3O4‬در ﻛﻨﺎر دﻣﻨﺪه ﻫﺎ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ وﺟﻮد اﻛﺴﻴﮋن ﺑﺎﻻ ﻣﻤﻜﻦ اﺳﺖ رخ ﺑﺪﻫﺪ‪.‬‬
‫‪FeS+5O2=Fe3O4+3SO2‬‬
‫ﻛﻪ ﺑﺎ‪١١٢‬ﺗﻮﺟﻪ ﺑﻪ وﺟﻮد ‪ FeS‬دوﺑﺎره ﺗﺒﺪﻳﻞ ﺑﻪ ‪ FeO‬ﻣﻲ ﺷﻮد‪.‬‬
‫جلسه ‪٢‬‬
‫‪۵۶‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫• ‪ -2‬در ﻣﺮﺣﻠﻪ دوم دﻣﺶ ﻫﻮا ﺳﺒﺐ ﺣﺬف ﮔﻮﮔﺮد و ﺗﻮﻟﻴﺪ ﻣﺲ ﺑﻠﻴﺴﺘﺮ ﻣﻲ ﺷﻮد‪.‬‬
‫• ﺑﺎ ﺣﺬف آﻫﻦ در ﻣﺮﺣﻠﻪ ﻗﺒﻞ و اداﻣﻪ دﻣﺶ ﻫﻮاي ﻏﻨﻲ از اﻛﺴﻴﮋن ‪ ،‬واﻛﻨﺸﻬﺎي اﻛﺴﻴﺪاﺳﻴﻮن‬
‫ﺳﻮﻟﻔﻴﺪ ﻣﺲ رخ ﻣﻲ دﻫﺪ‪:‬‬
‫‪• 2Cu2S+3O2Æ2Cu2O+2SO2‬‬
‫‪• Cu2S+2Cu2OÆ6Cu+SO2‬‬
‫‪• Cu2S+O2Æ2Cu+SO2‬‬
‫• ﺑﺎ اداﻣﻪ دﻣﺶ ﻫﻮا ﻣﻘﺪار ‪ Cu2S‬ﻛﺎﻫﺶ ﻳﺎﻓﺘﻪ و در ﻧﻬﺎﻳﺖ ﻓﺎز ﻣﺲ ﻣﺬاب ﺣﺎوي ﻳﻚ درﺻﺪ‬
‫ﮔﻮﮔﺮد ﻣﺤﻠﻮل در آن) ﺑﻠﻴﺴﺘﺮ( ﺑﻪ دﺳﺖ ﻣﻲ آﻳﺪ‪ .‬ﻣﮕﻨﻴﺘﻴﺖ ﺣﺎﺻﻞ ﺑﻪ ﺻﻮرت ذرات ﺟﺎﻣﺪ ﻣﻌﻠﻖ‬
‫در ﺳﺮﺑﺎره ﺗﺸﻜﻴﻞ ﻣﻲ ﺷﻮد‪.‬‬
‫• ﻳﻜﻲ از ﻣﻌﻤﻮﻟﺘﺮﻳﻦ ﻛﻨﻮرﺗﻮرﻫﺎي ﻣﻮرد اﺳﺘﻔﺎده در اﻳﻦ ﻣﺮﺣﻠﻪ ﻛﻨﻮرﺗﻮر ﭘﻴﺮس –اﺳﻤﻴﺖ‬
‫اﺳﺖ‪.‬‬
‫‪١١٣‬‬
‫‪steps in copper-making‬‬
‫'‪molten 'blister copper' + molten 'white metal‬‬
‫‪١١٤‬‬
‫جلسه ‪٢‬‬
‫‪114‬‬
‫‪Cu-S equilibrium phase diagram‬‬
‫‪۵٧‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪(a) Blowing of air and oxygen into the Cu2S removes S as SO2 to give S-deficient‬‬
‫‪‘white metal’, but no metallic copper. The reaction for this step is:‬‬
‫)‪Blowing until is lowered to 19.6%(b‬‬
‫‪(b) blowing of air and oxygen causes formation of a second liquid phase( point‬‬
‫‪c): metallic Cu containing 1%S‬‬
‫‪Increasing molten Cu & decreasing white‬‬
‫‪metal‬‬
‫‪Sinks to the bottom of converter‬‬
‫‪(c) Disappearing of sulfide phase: no white metal anymore, only metallic Cu‬‬
‫)‪containing 1%S (point d‬‬
‫‪Important note: Great care is taken from c to d that copper is not overoxidized‬‬
‫‪to Cu20. Because Cu2S is no longer available to reduce Cu2O back to Cu‬‬
‫‪By:‬‬
‫‪115‬‬
‫‪In step c converter flame color from clear to green when metallic copper‬‬
‫‪begins to be oxidized in front of the tuyeres.‬‬
‫دﻳﺎﮔﺮام ﻓﺎزي ‪ Cu-Cu2S‬ﻧﺸﺎن ﻣﻲ دﻫﺪ ﻛﻪ ﻓﻠﺰ ﺳﻔﻴﺪ )‪ (Cu2S‬اﻛﺴﻴﺪ ﺷﺪه و ﻫﻨﮕﺎﻣﻲ ﻛﻪ‬
‫ﻣﻴﺰان ﮔﻮﮔﺮد ﺑﻪ ﺣﺪود ‪ %19/5‬ﻣﻲ رﺳﺪ ﻳﻚ ﺷﻜﺎف ﺣﻼﻟﻴﺖ ﺑﻮﺟﻮد ﻣﻲ آﻳﺪ ﻛﻪ ﻣﺬاب ﺑﻪ دو ﻻﻳﻪ‬
‫ﺗﻘﺴﻴﻢ ﻣﻲ ﺷﻮد‪ .‬در ﺑﺎﻻ ﻻﻳﻪ اي از ﺳﻮﻟﻔﻴﺪ ﺑﺎ داﻧﺴﻴﺘﻪ ﻛﻢ و در ﭘﺎﺋﻴﻦ ﻻﻳﻪ اي از ﻣﺲ ﻣﺬاب ﺑﺎ‬
‫داﻧﺴﻴﺘﻪ ﺑﻴﺸﺘﺮ ﻛﻪ ﺣﺎوي ﺣﺪود ‪ 1‬ﺗﺎ ‪ % 1/2‬ﮔﻮﮔﺮد ﻣﻲ ﺑﺎﺷﺪ‪ ،‬ﺗﺸﻜﻴﻞ ﻣﻲ ﺷﻮد‪ .‬ﺑﺎ رﺳﻴﺪن ﺑﻪ اﻳﻦ‬
‫ﻣﻘﺪار ﮔﻮﮔﺮد ﻓﻘﻂ ﻓﻠﺰ ﻣﺲ ﺑﺎﻗﻲ ﻣﻲ ﻣﺎﻧﺪ و ﺑﺎﻳﺴﺘﻲ ﺗﻮﺟﻪ داﺷﺖ ﻛﻪ دﻣﺶ ﺑﻴﺸﺘﺮ اﻛﺴﻴﮋن ﺳﺒﺐ‬
‫اﻛﺴﻴﺪ ﺷﺪن ﻣﺲ ﻣﻲ ﺷﻮد‪ .‬اﻧﺘﻬﺎي دﻣﺶ را ﻣﻴﺘﻮان ﺑﺎ رﻳﺨﺘﻪ ﮔﺮي ﻗﻄﻌﻪ ﻛﻮﭼﻜﻲ از ﻣﺲ و ﺳﭙﺲ‬
‫ﺷﻜﺴﺘﻦ ﻗﻄﻌﻪ و ﻣﺸﺎﻫﺪه ﺳﻄﺢ ﻣﻘﻄﻊ ﺷﻜﺴﺖ ﻣﺸﺨﺺ ﻧﻤﻮد ﻛﻪ ﺑﺎﻳﺴﺘﻲ ﺳﻄﺢ ﻣﻘﻄﻊ ﺷﺎﻣﻞ ﺗﺎول‬
‫ﺑﺎﺷﺪ‪ .‬در ﻋﻤﻞ ﻣﺲ ﺑﻠﻴﺴﺘﺮ داراي ‪ 0/02‬ﺗﺎ ‪ % 0/5‬ﮔﻮﮔﺮد و ‪ 0/2‬ﺗﺎ ‪ 0/5‬اﻛﺴﻴﮋن اﺳﺖ‪.‬‬
‫در اﺑﺘﺪا ﺳﻌﻲ ﺷﺪ ﻛﻪ از ﻛﻨﻮﺗﻮر ﺑﺴﻤﺮ)ﻓﻮﻻد( ﺑﺮاي ﺗﺒﺪﻳﻞ ﻣﺲ اﺳﺘﻔﺎده ﺷﻮد ﻛﻪ ﺑﻪ‬
‫ﺷﻜﺴﺖ اﻧﺠﺎﻣﻴﺪ‪ .‬ﭼﻮن دﻣﺶ در اﻳﻦ ﻛﻨﻮرﺗﻮرﻫﺎ از ﻛﻒ اﻧﺠﺎم ﻣﻴﺸﻮد در ﻧﺘﻴﺠﻪ اﻛﺴﻴﮋن‬
‫در ﺗﻤﺎس ﺑﺎ ﻣﺲ ﺧﻮاﻫﺪ ﺑﻮد ﻛﻪ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻫﺪاﻳﺖ ﺣﺮارﺗﻲ ﺑﺎﻻي ﻣﺲ و دﻣﺎي ﻣﻨﻄﻘﻪ‬
‫‪ 6‬درﺟﻪ اﺳﺖ ﺳﺒﺐ ﻣﺴﺪود ﺷﺪن دﻣﻨﺪه ﻫﺎ ﻣﻲ ﺷﻮد‪.‬‬
‫دﻣﺶ ﻛﻪ در ﺣﺪود ‪600‬‬
‫‪١١٦‬‬
‫جلسه ‪٢‬‬
‫• ﺑﻪ ﻫﻤﻴﻦ ﻋﻠﺖ ﻛﻨﻮرﺗﻮرﻫﺎﻳﻲ ﺑﺎ دﻣﺶ از ﻛﻨﺎره ﻫﺎ ﺑﺮاي ﻣﺲ اﺑﺪاع ﮔﺮدﻳﺪ ﻛﻪ‬
‫ﺳﺒﺐ دﻣﺶ ﻫﻮا ﺑﻪ داﺧﻞ ﻓﺎز ﺳﻮﻟﻔﻴﺪي ﻣﻲ ﺷﻮد‪ .‬ﺳﺮﺑﺎره ﺣﺎﺻﻞ در اﻳﻦ ﻣﺮﺣﻠﻪ‬
‫ﻧﻴﺰ داراي ‪ 20‬ﺗﺎ ‪ % 40‬ﻣﺲ ﺑﻪ ﺷﻜﻞ اﻛﺴﻴﺪ ﻳﺎ ﺳﻴﻠﻴﻜﺎت ﻣﻲ ﺑﺎﺷﺪ ﻛﻪ ﭘﺲ از‬
‫ﺟﻤﻊ آوري دوﺑﺎره ﺑﻪ ﻛﻨﻮرﺗﻮر ﻣﺮﺣﻠﻪ اول ﺑﺮﮔﺮداﻧﺪه ﻣﻲ ﺷﻮد‪.‬‬
‫‪۵٨‬‬
٠٧/٢٩/١۴٣۵
117
remove impurities during converting
1)The principal removed elements from matte: Fe and S.
2) Ag, Au and the Pt goes to blister
copper
increasing matte grade impurity increases retention in the product
blister copper less blast blown through them, and they form less
slag.
recycling of impurities in offgas by returning to the smelting furnace.
such recycle returns all impurities to the circuit. then, some smelters
treat the dusts for impurity removal before they are recycled.
Bismuth, in particular, is removed because it causes brittleness118in
the final copper anodes and it can be a valuable byproduct.
۵٩
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Temperature control during converting
Controlled heat by:
(a) raising or lowering O2 enrichment level, which raises or lowers
the rate at which N2 ‘coolant’ enters the converter
(b) adjusting revert and scrap copper ‘coolant’ addition rates.
119
• Slag and Flux Control
• The chief objective of creating a slag in the converter is to
liquefy newly formed solid FeO and Fe3O4.
• SiO2-bearing flux (e.g. quartz, quartzite, sand) is added.
• An indicator of slag composition is the mass ratio of SiO2/total
Fe.
• Enough SiO2 flux is added to produce an SiO2/Fe ratio of ~0.5.
• Acceptable Fe3O4 levels are typically 12-18%.
• Some smelters use Au- and Ag-bearing siliceous material as
converter flux. The Au and Ag dissolve in the matte and
proceed with copper
p
pp to the electrorefineryy where theyy are
profitably recovered. These smelters tend to maximize flux
input.
• Most smelters use just enough flux to obtain an appropriately
fluid slag. minimizes flux cost, slag handling, and the expense
of recovering Cu from the slag.
120
۶٠
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
End Point Determinations
• Slag Blow
• The slag-forming stage is terminated and slag is poured from
the converter when there is about 1% Fe left in the matte.
• Further blowing causes excessive Cu and solid magnetite in
slag.
• The blowing is terminated when:
• (a) Metallic copper begins to appear in matte samples or
when X-ray fluorescence shows 76-79% Cu in matte.
• (b) The converter flame turns green from Cu vapor in the
converter offgas
• (c) PbS vapor (from Pb in the matte feed) concentration
decreases and PbO vapor concentration increases.
121
Copper Blow
• The copper making stage is terminated the instant that copper
oxide begins to appear in copper samples.
• Copper oxide attacks converter refractory, so it is avoided as
much as possible.
• The copper blow is ended and metallic copper is poured
from the converter when:
• (a) Copper oxide begins to appear in the samples.
• (b) SO2 concentration in the offgas falls because S is nearly
gone from the matte)
• (c)
( ) PbO concentration
i iin the
h offgas
ff
f ll and
falls
d CuOH
C OH
concentration increases (H from moisture in the air blast).
122
۶١
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Alternatives to Peirce-Smith Converting:
• Problems with Pierce-smith:
• (a) Leak of SO2-bearing gas into the workplace
during
g charging
g g and pouring
p
g
• (b) it leaks air into its offgas between its mouth and
gas-collection hood, producing a relatively weak SO2
gas
• c) Batchwise operationÆ uneven flow of SO2 offgas
into the sulfuric acid plant
123
Alternatives to Peirce-Smith Converting:
Solutions:
(a) Hoboken or siphon converter ( Peirce-Smith converter with an
improved gas-collection system), 10 units in 2002 and 4 in 2010
(b) Mitsubishi top-blown converter( blows oxygen enriched blast
onto The molten matte surface via vertical lances), 4 units in 2010
(c) Outokumpu flash converting (oxidizes solidified crushed
matte in a small Outokumpu flash furnace), 2 units in 2010
(d) Noranda continuous converting ( uses submerged tuyeres to
blow oxygen-enriched air into matte in a Noranda-type furnace), 1
unit in 2010
124
۶٢
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Summary of converting
The products of converting process ;
• (a) molten blister copper (99%Cu, 0.02% S and 0.6% O)
Æfire refining for final S and O removal, then anode
casting.
• (b) molten Fe-silicate slag (4 to 8% Cu) which is sent to Cu
recovery, then Discard.
• (c) SO2-bearing offgas which is treated for heat, dust and
SO2 capture.
•
All of the heat for converting comes from Fe and S
oxidation
125
Copper Loss in Slag
• Smelting furnace slag :1-2%Cu
• Converter slag: 4-8% Cu (The percentage increases as
matte grade increases)
• The Cu in smelting and converting slags is present either as
•
( ) di
(a)
dissolved
l d Cu,
C presentt mostly
tl as Cu
C ions(Cu
i
(C 2O or Cu
C 2S)
•
(b) entrained droplets of matte.
• matte grades above 70% CuÆCu2O becomes the dominant form of
dissolved Cu (why? Because of increasing the activity of Cu2S in the
matte. Higher Cu2S activity pushes the reaction, to the right.
• The solubility of sulfur in slags is also lower in contact with highergrade mattes. As a result, dissolved Cu in converter slags is present
mostly as Cu2O.
• Conversely, the dissolved Cu in smelting slags is present mostly as
Cu2S. This is due to the lower matte grades and oxygen potentials in
126
the smelting furnace.
۶٣
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Entrained droplets of matte
The most obvious sources of entrained matte in slag
are droplets of matte that have failed to settle
completely through the slag layer during smelting.
• Matte droplets can become suspended in smelter
slag by several other mechanisms. Some are
carried upwards from the molten matte layer by
gas bubbles generated by the reaction
127
Copper Loss in Slag
strategies for minimizing the amount of Cu lost:
minimizing the mass of slag generated
minimizing the percentage of Cu in the slags
processing
p
g the slags
g to recover as much Cu as
possible.
Hydrometallurgy
pyrometallurgy
1- Minimizing Slag Generation:
adding less fluxÆ less slag but increase the aFeO in the slag
Æ more dissolved Cu2O by Reaction and more magnetite
™maximizing concentrate grades means less gangue and
less slag
128
۶۴
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
2-Minimizing Cu Concentration in Slag
• Maximizing slag fluidity, principally by
avoiding excessive Fe3O4 (s) in the slag and
by keeping the slag hot
• Providing enough SiO2 to form distinct matte
and slag phases
• Providing a large quiet zone in the smelting
furnace
• Avoiding
A idi an excessively
i l thick
hi k llayer off slag
l
• Reduce Fe3O4(s) to FeO(l) by adding coal or
coke
129
3-pyrometallurgical salg settling/reduction
Conditions that encourage suspended matte droplets to
settle to a matte layer are low viscosity slag, low turbulence,
a long residence time, and a thin slag layer.
• These conditions are difficult to obtain in a smelting vessel
vessel,
particularly the necessary residence time.
• Solution: constructed separate furnaces specifically for
cleaning smelting an
• These furnaces have two purposes: (a) allowing suspended
matte droplets to finish settling to the molten matte layer, and
(b) facilitating the reduction of dissolved Cu oxide to suspended
Cu sulfide drops.
• electric slag-cleaning furnace with three carbon electrodes(to
providing a reducing atmosphere, adding coke helps reduce
electrode loss)
130
۶۵
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪Electric slag-cleaning furnace. (1000~1500 tonnes of slag per day).‬‬
‫‪131‬‬
‫• تصفيه ‪:Refining‬‬
‫• تقريبا تمام مس توليد شده به روش ذوب مات و تبديل‪ ،‬پااليش الکتروليتی می شود‪ .‬در‬
‫اين مرحله مقادير بيشتری از گوگرد و اکسيژن موجود در مس بليستر بايستی زدوده‬
‫شوند تا بتوان عمليات ريخته گری آن را انجام داد‪.‬‬
‫• مس بليستر حاصل از مراحل قبل )پيرس اسميت( دارای حدود ‪ %٠/٠۵‬گوگرد و‬
‫اکسيژن است‪ .‬حضور اين عناصر به صورت محلول سبب تشکيل حبابھای‬
‫ژ‬
‫‪%٠/۵‬‬
‫‪ SO2‬در حين ريخته گری و ايجاد حفرات گازی در قطعه می شوند‪ .‬ھدف اوليه پااليش‬
‫گرمايی‪ ،‬گوگردزدايی از مس بليستر است که در دو مرحله انجام ميشود‪:‬‬
‫• ‪ -١‬اکسايش گوگرد )به ‪ (SO2‬با ھوا تا اينکه ميزان گوگرد تا ‪ ٠/٠٠١‬تا ‪% ٠/٠٠٣‬‬
‫برسد‪.‬‬
‫• ‪ -٢‬حذف اکسيژن موجود درمس در خالل تبديل و پااليش مرحله ‪١‬‬
‫مس حاصل از اين مرحله به صورت آندھايی ريخته گری شده و برای مرحله بعدی که‬
‫تصفيه الکتروليتی است به کار ميرود‪ .‬پااليش گرمايی در کوره ھای دوار شبيه به‬
‫پيرس اسميت انجام ميشود‪.‬‬
‫‪١٣٢‬‬
‫جلسه ‪٢‬‬
‫‪۶۶‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫•‬
‫•‬
‫•‬
‫•‬
‫پااليش گرمايی در کوره ھای دوار طی مراحل زير انجام می شود‪:‬‬
‫‪ -١‬شارژ مس بليستر توليد شده درمرحله قبل به ميزان ‪ ١۵٠‬تا ‪ ٣٠٠‬تن به کوره دوار‬
‫‪ -٢‬دمش ھوا از طريق تويرھا و کاھش گوگرد موجود تا مقدار ‪ %٠/٠٠١‬که ميزان‬
‫کاھش گوگرد با ريخته گری يک نمونه کوچک مشخص می شود‪ .‬اکسيژن موجود در‬
‫انتھای اين مرحله در حدود ‪ %٠/۶‬می باشد‪.‬‬
‫طبيعی پروپان از طريق تويرھا به داخل مس توليد شده و کاھش ميزان‬
‫‪ -٣‬دمش گاز طبيع‬
‫اکسيژن را تا ‪ .%٠/٠۵‬در اين مرحله سطح قطعه ريخته شده صاف و مسطح خواھد‬
‫بود‪ .‬سطح مذاب حاصله بوسيله کک کم گوگرد پوشانده می شود تا از اکسايش مجدد آن‬
‫جلوگيری شود‪.‬‬
‫‪١٣٣‬‬
‫‪Rotary Furnace Refining‬‬
‫‪١٣٤‬‬
‫جلسه ‪٢‬‬
‫‪۶٧‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫• شيمی پااليش گرمايی ‪:‬‬
‫• فرآيند ھای پااليش گرمايی دارای دو دسته واکنش ھستند‪ -١ :‬سيستم‬
‫‪ )Cu-O-S‬گوگردزدايی( ‪ -٢‬سيستم ‪ )Cu-H-O‬اکسيژن زدايی(‬
‫ی به صورت زير است‪:‬‬
‫ی‪ :‬واکنش اصلی‬
‫• ‪-١‬گوگردزدايی‬
‫• در ھمان زمان اکسيژن بواسطه حل شدن در مذاب مس به صورت محلول‬
‫در آن باقی می ماند‪ .‬واکنش تعادلی بين گوگرد و اکسيژن به صورت زير‬
‫است‪:‬‬
‫است‪:‬‬
‫)‪[S]cu+2[O]cu=SO2(g‬‬
‫‪where K is about 106 at 1200 C‬‬
‫‪١٣٥‬‬
‫اين مقدار باالی ثابت تعادل نشان می دھد حتی در پايان مرحله‬
‫گوگردزدايی که ميزان گوگرد به ‪ %٠/٠٠٢‬می رسد‪ ،‬ھنوز ھم تمايل‬
‫به گوگردزدايی و تشکيل گاز ‪ SO2‬وجود دارد و اکسيژن ھم تمايل‬
‫دارد‪.‬‬
‫ب ررا ر‬
‫در مذاب‬
‫ببه حل شدن ر‬
‫‪ -٢‬اکسيژن زدايی‪ :‬غلظت اکسيژن در پايان مرحله گوگردزدايی به‬
‫حدود‪ %٠/۶ -٠/٣‬وزنی می رسد‪ .‬اين اکسيژن به ھمراه مس ذرات‬
‫جامد ‪ Cu2O‬را تشکيل می دھد که در حين ريخته گری به صورت‬
‫باقی ممی ماند و با حذف اکسيژن ممی توان اين‬
‫ناخالصی در قطعه باق‬
‫ناخالص‬
‫ناخالصی را نيز کاھش داد‪ .‬عمل اکسيژن زدايی را می توان با‬
‫استفاده از ھيدروکربنھايی چون گاز طبيعی و پروپان انجام داد‬
‫‪136‬‬
‫جلسه ‪٢‬‬
‫‪۶٨‬‬
٠٧/٢٩/١۴٣۵
:‫واکنشھا عبارتند از‬
•
‫ حالليت اکسيژن در مذاب کاھش يافته و تشکيل بخار آب می‬،‫ با کاھش دما‬.‫ھيدروژن تا حدی در مذاب حل می شود‬
‫ اين بخار موجود می تواند به جبران انقباض ناشی از انجماد تا حدی کمک کند و سبب می شود که سطح مس‬.‫دھد‬
.‫ريخته شده صاف و مناسب باشد‬
•
• CHOICE OF HYDROCARBON FOR DEOXIDATION
• Many different hydrocarbons are used for O removal, but
natural gas, oil, liquid petroleum gas, and propane/butane are
favored
• Oxygen removal typically requires
requires~5
5 kg of gas or liquid
hydrocarbons per tonne of copper.
‫( است که مشکل توليد دوده مانند گازھای طبيعی‬CO+H2) ‫بھترين گاز برای اکسيژن زدايی گاز طبيعی اصالح شده‬
.‫و پروپان را ندارد‬
•
١٣٧
CASTING ANODES
• The final product of fire refining is molten
copper,~0.003% S, 0.16% O, 1200 C, ready for
casting as anodes
anodes.
• 16 to 32 such molds are placed on a large
horizontal rotating wheel
• Cooling the anodes by spraying water on the
tops and bottoms of the molds while the wheel
rotates.
• Stripping anodes from their molds (usually by
an automatic raising pin and lifting machine)
138
after a 270 rotation.
۶٩
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
CASTING ANODES
• Spraying the empty molds with a barite/water
wash (30 vol.-% barite, 70% water) to
prevent sticking of the next anode
• Casting
C i rates are ~50-100
50 100 tonnes off
anodes/h
139
CASTING ANODES
١٤٠
٧٠
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪141‬‬
‫‪142‬‬
‫جلسه ‪٢‬‬
‫‪٧١‬‬
٠٧/٢٩/١۴٣۵
• Recent anode designs:
• A) knife-edged lugs,
which make the anode
hang vertically in the
electrolytic cell
• (b) thin tops where the
anode is not submerged
(i.e. where it remains
undissolved during
refining). The latter
feature decreases the
amount of un-dissolved
anode scrap that must
be recycled when the
anode is electorefined
143
Anode characteristics
• The most important aspect of anode casting,
besides flat surfaces, is uniformity of thickness.
• This uniformity ensures that all the anodes in an
electrorefining cell reach the end of their useful life
at the same time.
• Anode mass is normally 360~410 kg.
144
٧٢
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
CONTINUOUS ANODE CASTING
• Continuous casting of anodes in a Hazelett twin-belt type
caster
١٤٥
146
٧٣
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Sketch of system for shearing anodes from Hazelett
Hazelett-cast
cast copper strip
١٤٧
Removal of Impurities During Fire Refining
• Low levels of impurities in the anodes,
electrorefining and electrolyte purification keep the
impurities in the cathode copper product at low
levels.
levels
• With excessively impure blister copper, it can be
advantageous to eliminate a portion of the
impurities during fire refining
The process entails adding appropriate fluxes
during the oxidation stage of fire refining.
The flux may be blown into the copper through the
refining furnace tuyeres or it may be added prior to
charging the copper into the furnace.
148
٧۴
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Removal of Impurities During Fire Refining
• Antimony and arsenic removal: blowing basic flux
(56% CaCO3, 11% CaO, 33% Na2CO3) into the copper
during
g the oxidation stage
g (for
(
1 tonne of copper;7
pp ; kg
g
of flux)
• 90% As and 70% Sb are removed to slag
• Lead removal: charging silica flux and solid electric
furnace slag to its rotary anode furnace prior to adding
the molten copper
149
Electrolytic Refining
¾ Electrochemically dissolving copper from impure copper anodes
(98.5~99.5%Cu) into Cu2SO4-H2SO4-H2O electrolyte
(‫¾ )انحالل مس از آند ناخالص به داخل الکتروليت‬
¾ Selectively electroplating pure copper from this electrolyte without the anode
impurities.
‫کاتد‬
‫الکتروليت روی کات‬
‫¾ رسوب تترجيحی مس ااز الکت ل‬
¾ Products: A) copper free of harmful impurities (purity of >99.997% Cu)
¾ B) Valuable impurities (e.g. gold and silver) from copper for recovery as
byproducts.
‫( فلزات گرانبھا نظير طال و نقره به صورت محصول جانبی به دست می‬٢ ‫( مس عاری از ناخالصی‬١ ‫¾ با اين فرآيند‬
.‫آيد‬
%٠/٠٢۵
/ ٢۵ ‫ تا‬٠/٠١٨
/ ١٨ ‫اکسيژن بين‬
‫ميزان اک ژ‬
‫ و ا‬٢٠
٢ ppm ‫کمتر ااز‬
‫شده ک ت‬
‫الکتروليتی ش‬
‫تصفيه الکت ل ت‬
‫ناخالصی در مس ت ف‬
‫ميزان ناخال‬
‫ا‬
¾
‫است‬
150
٧۵
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
151
Principles of Electrolytic Refining
• Application of an electrical potential between a copper anode and a
metal cathode in Cu2SO4-H2SO4-H2O electrolyte causes the following:
• 1) Copper is electrochemically dissolved from the anode into the
electrolyte producing copper cations plus electrons:
• 2) The electrons produced are conducted towards the cathode through
the external circuit and power supply
• 3) The Cu++ cations in the electrolyte migrate to the cathode by
convection and diffusion.
• 4) The electrons and Cu++ ions recombine at the cathode surface to
form copper metal (without the anode impurities):
Overall copper electrorefining:
Overcome to this and wire and electrolyte
resistance we need 0.25-0.3 volt
٧۶
E0=0 volt
Reversible reaction
152
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Behavior of Anode Impurities During Electrorefining
• Ag, As, Au, Bi, Co, Fe, Ni, Pb, S, Sb, Se and Te
• Their behavior is governed by their position in the
electrochemical series
At the anode,
anode elements with less positive reduction potentials
than Cu dissolve under the applied potential, while elements
with more positive reduction potentials remain in solid form.
At the cathode, elements with more positive reduction
potentials deposit preferentially, while elements with more
negative
g
potentials
p
remain in solution.
153
To slime
Dissolve into electrolyte
١٥٤
٧٧
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Behavior of Anode Impurities During Electrorefining
• Au and Pt : not dissolve in sulfate electrolyte. form solid
‘slimes’ which adhere to the anode surface or fall to the
bottom of the electrolytic cell.
Se and Te: present in anodes as compounds with copper and
silver They also enter the slimes in these bound forms,
silver.
forms e
e.g.
g
Cu2Se, Ag2Se, Ag2Te
Pb and Sn: form solid PbSO4 and SnO2. Both join
the slimes
Co, Fe, Ni, S and Cd: dissolve extensively in the electrolyte. Excessive
buildup in the electrolyte and contamination of the cathodes is prevented
by continuously removing them from an electrolyte bleed stream.
As, Bi and Sb: dissolve in the electrolyte. As is most harmful element
dissolve in electrolyte and electroplate in the cathode:
Solution: adding HCl and NaCl delay as deposition on cathode.
Ag dissolve in the electrolyte but adding Cl ions prevent155
of it.
Electrorefining cells:
Anodes: large (1 m x 1 m), thin (0.04-0.05 m)
Cathodes (lower potentials): thin (0.001 to 0.003 m) stainless
steel plates interleaved about 50 mm apart in a cell filled with
electrolyte
Electrolyte containing CuSO4 and H2SO4 continuously enters
at the bottom end of each cell.
Stream of electrolyte
between cells
Anodes removed from the cell (and replaced with new anodes)
before they are in danger of breaking and falling.
٧٨
١٥٦
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Anodes
They are typically 4~5 cm thick, with a mass of
300~400 kg.
The anodes slowly become thinner as the copper
dissolves into the electrolyte.
Once they reach 15~20% of their original mass (after
a typical electrorefining time of 21 days), removed
from the cell before they break up and fall into the
cell.
This anode scrap is washed free of slimes, dried,
١٥٧
remelted, and cast into new anodes.
Cathodes
Copper is electrodeposited onto these cathodes for
7 to 10 days. The copper-plated cathodes are
washed in hot-water sprays and their copper
‘plates’ (50 to 80 kg, each side) are machinestripped from the stainless steel.
• These strips prevent copper from depositing
completely around the cathode.
The cathode is about 1 m2 in area
١٥٨
٧٩
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Electrolyte
Electrolytes:40 to 50 g Cu/L, 170~200 g/L
H2SO4, 0.02 to 0.05 kg Cl/m3 and impurities
(mainly Ni, As and Fe).
1 to 10 ppm organic leveling and grain
refining addition agents(60-65°C working T).
Why electrolyte circulation is essential?
1-bring warm, purified electrolyte into the cell
2- ensure uniform Cu++ and leveling/grainrefining agent concentrations across all
cathode surfaces
3- remove dissolving impurities from the cell.
159
Removal of impurities and dissolved Cu from
the electrolyte:
Soluble anode impurities are removed in three main
sequential steps:
1)) electrowinning
g copper
pp using
g Pb-Sn-Ca anodes
and stainless steel or copper starter sheets
2) electrowinning As, Bi and Sb from Cu-depleted
electrolyte into an impure Cu-As-Bi-Sb cathode
deposit
3) evaporation of water from the Cu-depleted
electrolyte
l t l t and
d precipitation
i it ti
off Ni sulfate
lf t crystals
t l
from the concentrated solution.
160
٨٠
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Adding organic agents (bone glues) why?
Deposition of smooth, dense, pure copper is
promoted by adding leveling and grain-refining
agents to the electrolyte. Without these, the cathode
deposits would be dendritic and soft. They would
entrap electrolyte and anode slimes.
Mechanism:
bone glues are protein colloid that
electrodeposition of large protein molecules at the
ti off protruding,
tips
t di
rapidly
idl growing
i copper grains
i
creates an electrically resistant barrier,
encouraging sideways crystal growth. 0.05 to
0.12 kg/tonne of cathode copper.
161
162
٨١
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Summary
‰ The copper from electrorefining, melted and cast, contains less than 20 ppm
impurities + oxygen (0.018 to 0.025%.)
‰ Electrorefining :1) electrochemically dissolving copper from impure copper
anodes into CuSO4-H2SO4-H2O electrolyte,
2) electrochemically plating pure copper from the electrolyte onto stainless steel
or copper cathodes. The process is continuous.
‰ Impurities :Insoluble impurities in the anode adhere to the anode or fall to the
bottom of the refining cell. They are removed and sent to a Cu and byproduct
metal recovery plant. Soluble impurities depart the cell in continuously
flowing electrolyte to bleeding process.
‰ The critical objective of electrorefining is to produce high purity cathode
copper. It is attained with:
•
(a) precisely spaced, flat, vertical anodes and cathodes
•
(b) a constant, gently flowing supply of warm, high Cu++ electrolyte across all
cathode faces
•
(c) provision of a constant, controlled supply of leveling and grain-refining
agents.
163
Hydrometallurgical Copper Extraction
•
•
•
Leachs quickly
•
20% of primary copper production
For low grade ore(<0.25% cu) Ælow grade Cu-'oxide' and chalcocite ores
In 2010, about 4.5 million tonnes per year of metallic copper were
hydrometallurgically
produced
Not leached
164
٨٢
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Hydrometallurgy:
1- Leaching
2- Solution concentration and purification
3- Metal recovery
Cu heap leach/solvent extraction/
electrowinning flowsheet
165
166
٨٣
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
167
Leaching
• 1- Oxide' ores are leached quickly
by H2SO4 without oxidation.
• 2-Chalcocite (and to a much
lesser extent bornite and covelite)
are oxidized and leached by
H2SO4-H2O
O-O
O2-Fe
e3+ so
solutions.
ut o s
168
٨۴
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Leaching of Copper Oxide Minerals
the Pourbaix
(potential-pH)
di
diagram
for
f the
th CuC
O-S system.
Copper can be
dissolved as Cu2+
under mildly acidic
conditions (pH < 5).
169
Examples of some copper minerals that leach in this manner are:
Copper sulfide minerals require the use of acid and an
oxidizing agent to break the mineral lattice and release Cu2+
into solution
Elemental copper found in nature can be leached by either oxygen
or ferric ion
All copper sulfides require the presence of Fe3+ and O2 as
oxidizing agents for leaching to occur.
٨۵
170
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
The copper sulfide is oxidized by Fe3+ . The resulting Fe2+ is
reoxidized to Fe3+ by O2. The Fe(II)/Fe(III) redox couple acts in a
catalytic manner in these reactions
Fe is a requirement for rapid leaching
Oxidation by Fe3+
Cyclic process
171
LEACHING METHODS
•
•
•
•
In-situ leaching
Heap/dump leaching
turbulent leaching
Tank leaching
172
٨۶
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Heap Leaching(‫)حل کردن توده ای‬
Copper leaching is dissolving Cu from minerals into an aqueous H2SO4-H2O
solution. Heap leaching is trickling the H2SO4-H2O solution through large 'heaps'
of ore under normal atmospheric conditions
H2SO4-H2O
Heap
Chemistry of heap leaching
Non-sulfide Cu minerals are leached directly by H2SO4-H2O solutions :
Leaching of sulfide minerals need oxidant as well as H2SO4 that
oxidant is dissolved O2 from air. According to:
speed up leaching
Bacterial action
173
‫فرواکسيدان تيو باسيليوس‬
• thiobacillus ferrooxidans
• leptosprillum ferrooxidans
• thiobacillus thiooxidans
• They are present in leach heaps In order of 1012 bacteria
per tonne
t
off ore Mine
Mi water
t and
d moistening
i t i off the
th ore
provides them to the leach solutions
Optimum bacterial action:
‰ pH between 1.5 and 6 (optimum -2)
‰ temperature between 5 and 45°C (optimum -30°C)
‰ an adequate O2 supply
The product of heap leaching is pregnant solution containing
1 to 6 kg Cu++/m3.
It is sent to solvent extraction/electrowinning for copper
production
174
٨٧
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Solvent Extraction
Solvent extraction (SX) purifies and upgrades the pregnant leach
solution (PLS) produced by the leaching operation to generate an
electrolyte from which high quality copper cathode can be
electrowon.
175
Solution concentration and purification
• Solvent Extraction Transfer of Cu from Leach Solution to
Electrolyte why?
• The pregnant leach solutions by leaching are:
• (a) too dilute in Cu (1-6 kg Cu/m3)
• (b) too impure (1 - 10 kg Fe/m3)
Industrial electrowinning requires pure, Cu-rich electrolytes
with >35 kg Cu/m3.
This high concentration of Cu:
(a) ensures that CU++ ions are always available for plating at
the cathode surface
(b) gives smooth, dense, high purity, readily marketable
cathode copper.
Solvent extraction provides the means for producing pure,
high Cu++ electrolytes from dilute, impure pregnant leach176
solutions.
٨٨
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
extraction and stripping,
177
extraction and stripping
(a) the PLS is contacted with an organic
phase containing a Cu-specific organic
extractant. The extractant complexes with
Cu2+, resulting in the transfer of the metal
ion from the aqueous phase into the
organic phase, leaving all other impurity
specie present in the PLS in the aqueous
phase.
p
ase
(b) The organic phase, now loaded with Cu,
and the depleted aqueous phase (raffinate),
178
are separated by gravity.
٨٩
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
(c) The raffinate is recycled back to the
leach circuit where the acid generated in
the extraction process can be used.
(d) In the stripping process, the Culoaded organic phase is contacted with a
strong acid spent electrolyte (175-190
g/L H2SO4) from the EW circuit, which
strips Cu from the organic into the
electrolyte.
179
(e) The Cu-depleted organic phase (known
as the stripped organic) and the Cuenriched aqueous phase are separated by
gravity.
(f) The stripped organic phase is recycled
back to the extraction circuit for renewed
contact with fresh PLS.
(g) The advance electrolyte is sent to EW
where Cu2+ is reduced and
electrodeposited on the cathode as pure
180
metallic copper.
٩٠
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
CHEMISTRY OF COPPER SOLVENT EXTRACTION
The organic extractant removes Cu2+ from the PLS by the extraction
reaction:
COMPOSITION OF THE ORGANIC PHASE
The organic phase comprises two essential components:
(a) The extractant is the active molecule that complexes with Cu2+,
enabling it to be transferred from the aqueous to the organic
phase;
(b) The diluent is an inert hydrocarbon carrier for the extractant,
which reduces the viscosity of the organic phase (so that it can be
easily mixed with the aqueous phases to allow mass transfer to
occur) and reduces the density of the organic phase (to allow for
gravity separation of the two phases).
The organic phase should be immiscible with CuSO4-H2SO4
solutions and fluid enough (viscosity=2-10 cP) for pumping,
181
continuous mixing, and gravity separation.
Extractants
Modern copper extractants are based on the oxime
functionality. These molecules complex with the Cu2+ ion in a
process known as chelation. It is the nature of this chelating
reaction that allows these extractants to react very
selectively with Cu2+ ,rejecting
rejecting other species in the PLS to the
raffinate.
Diluents:
Oximes are thick viscous liquids
that are unsuitable for pumping,
mixing, and phase separation. The
extractants are therefore
formulated to make them fluid and
then added to a diluent at
concentrations of 5-35 vol.-% for
use. The extractant concentration
chosen depends on the copper
concentration of the PLS.
٩١
182
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
THE ELECTROWINNING PROCESS
(a) Immersing metal cathodes and inert (but conductive) anodes
into a purified electrolyte containing CuSO4 and H2SO4
(b) Applying a direct electrical current from an external source
such as a rectifier, which causes current to flow through the
electrolyte between the cathodes and anodes;
(c) Plating pure metallic copper from the electrolyte onto the
cathodes using the energy provided by the electrical current to
drive the reduction of the Cu2+ ions to Cu metal.
The
e cat
cathodes
odes are
a e usually
usua y stainless
sta ess stee
steel b
blanks.
a s The
ea
anodes
odes a
are
e
usually rolled Pb-alloy sheets.
Copper is electroplated onto the cathodes for 6-7 days, after
which the plated copper is machine-stripped from the stainless
steel cathode blanks, washed and packed.
183
CHEMISTRY OF COPPER ELECTROWINNING
•
The EW cathode reaction is the same as for electrorefining:
The anode reaction is, however, completely different. Water is decomposed at
the inert anode to form oxygen gas and release protons:
The EW products
Th
d t are:
(a) Pure copper metal at the cathode;
(b) Oxygen gas at the anode;
(c) Regenerated sulfuric acid in the electrolyte.
184
٩٢
٢ ‫جلسه‬
٠٧/٢٩/١۴٣۵
Schematic view of an electrowinning cell.185
( contains only 30–54% aluminium oxide)
186
٩٣
٢ ‫جلسه‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪187‬‬
‫‪188‬‬
‫جلسه ‪٢‬‬
‫‪٩۴‬‬
‫‪٠٧/٢٩/١۴٣۵‬‬
‫‪189‬‬
‫جلسه ‪٢‬‬
‫‪٩۵‬‬
1/--pages
Report inappropriate content