close

Вход

Log in using OpenID

embedDownload
www.bramaths.com
m
I
f
F
∀x∈ I F '(x) = f (x)
IR
y0
I
x0
F +λ
  IR
I
f
2
f
F
f
I
F
G
f
F
f
I
www.bramaths.com
1
1
I
I
g
I
f
F  x0   y0
I
F
I
F
I
  IR
f
I
3
F
F G
f g
4
Brahim Ajghaider
II
www.bramaths.com
2
Brahim Ajghaider
III
1
b
 f  x dx  F  x 
b
a
a;b 
 F b   F a  :
f
a
a;b 
f
F
b
 f  x dx
a
2
a
 kf  x dx  k  f  x dx
b
b
 f  x dx   f  x dx
a
b
a
a
b
a
;  f (x )dx  0
a
b
b
b
a
a
a
  f  x   g  x dx   f  x dx   g  x dx
b
c
b
a
a
c
 f  x  dx   f  x dx   f  x dx
x
F  x    f t dt  F '  x   f  x 
a
www.bramaths.com
3
Brahim Ajghaider
3
b
f  x   0   f  x  dx  0 a  b
a;b 
f
a
4
b
A
a  b  a;b 
1
f  x dx
b  a a
c a;b 
a;b 
f
f
A  f c 
5


(

)

a;b 
g' f '
a;b 
f
g
b
b
 f '  x g  x  dx  f  x  g  x    f  x g '  x dx
b
a
a
a
6
a;b 
b
 f  x dx
f
x b
x a
ox  C f 
a
www.bramaths.com
4
Brahim Ajghaider

a;b 
f
a
c
d
c
d
b
      f  x dx   f  x  dx   f  x  dx
b
  f  x   g  x   dx
x b
x a
C  C 
g
f
a
www.bramaths.com
5
Brahim Ajghaider
 
a;b 
o ; i ; j 
f
b
V  f
2
 x  dx
a
www.bramaths.com
6
Brahim Ajghaider
1/--pages
Пожаловаться на содержимое документа